若直線x-y-1=0與曲線x2y-ax+a=0相切,則實(shí)數(shù)a為
 
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專(zhuān)題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:求導(dǎo),利用切線的斜率為1,切點(diǎn)在直線x-y-1=0與曲線x2y-ax+a=0,即可求出實(shí)數(shù)a.
解答: 解:由x2y-ax+a=0可得y=
a
x
-
a
x2
,
∴y′=-
a
x2
+
2a
x3
=1
∵x-y-1=0且x2y-ax+a=0,
∴x2(x-1)-ax+a=0
∴a=1.
故答案為:1.
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知各項(xiàng)為正數(shù)的數(shù)列{an}中,a1=1,對(duì)任意的k∈N*,a2k-1,a2k,a2k+1成等比數(shù)列,公比為qk;a2k,a2k+1,a2k+2成等差數(shù)列,公差為dk,且d1=2.
(1)求a2的值;
(2)設(shè)bk=
1
qk-1
,證明:數(shù)列{bk}為等差數(shù)列;
(3)求數(shù)列{dk}的前k項(xiàng)和Dk

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|
x-2
x+5
<0},B={x|x2-2x-3≥0,x∈R},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿(mǎn)足約束條件
x≥1
y≥
1
2
x
2x+y≤10
,向量
a
=(y-2x,m),
b
=(1,-1),且
a
b
,則m的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|x∈Z且-10≤x≤-1},B={x|x∈Z且|3x+2|≤5},則A∪B中元素的個(gè)數(shù)是
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

lim
n→∞
1+3+5+…+(2n-1)
3n2+3n+1
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一次函數(shù)y=-3x+2的值域?yàn)?div id="wtmssuy" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x∈R|x2-2x-3≤0},B={x∈R|
1
x
<1},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F(xiàn)在線段CD上.
(Ⅰ)若FD=2FC,試判斷直線AF與平面BCE的位置關(guān)系,并加以證明;
(Ⅱ)當(dāng)二面角B-AF-E的平面角的正弦值為
5
5
時(shí),求
CF
CD
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案