【題目】已知函數(shù).

(Ⅰ)若,求曲線在點處的切線方程;

(Ⅱ)若有兩個極值點,求實數(shù)a的取值范圍;

(Ⅲ)若,求在區(qū)間上的最小值.

【答案】(Ⅰ);(Ⅱ);(Ⅲ).

【解析】

由題意得

(Ⅰ)當(dāng)時,求得,根據(jù)點斜式方程即可求出切線方程;

(Ⅱ)由題意得兩個不等的正根,令,則,由此可得函數(shù)的單調(diào)性,由此可求出答案;

(Ⅲ)由題意可得,由二階導(dǎo)的取值符號可得到的單調(diào)性,得到,由此可求出函數(shù)上單調(diào)遞減,從而求出最值.

解:∵

;

(Ⅰ)當(dāng)時,,

∴曲線在點處的切線方程為,

;

(Ⅱ)∵若有兩個極值點,

有兩個不等的正根,即兩個不等的正根,

,,,

當(dāng),此時單調(diào)遞增,;

當(dāng),此時單調(diào)遞減,

∴函數(shù)處取得極大值,也是最大值

因為兩個不等的正根,

,得,

∴實數(shù)a的取值范圍是

(Ⅲ)∵,

,

,令

當(dāng)時,,此時單調(diào)遞增,

當(dāng)時,,此時單調(diào)遞減,

,

上單調(diào)遞減,

上的最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某健身機構(gòu)統(tǒng)計了去年該機構(gòu)所有消費者的消費金額(單位:元),如下圖所示:

1)將去年的消費金額超過 3200 元的消費者稱為“健身達(dá)人”,現(xiàn)從所有“健身達(dá)人”中隨機抽取 2 人,求至少有 1 位消費者,其去年的消費金額超過 4000 元的概率;

2)針對這些消費者,該健身機構(gòu)今年欲實施入會制,詳情如下表:

會員等級

消費金額

普通會員

2000

銀卡會員

2700

金卡會員

3200

預(yù)計去年消費金額在內(nèi)的消費者今年都將會申請辦理普通會員,消費金額在內(nèi)的消費者都將會申請辦理銀卡會員,消費金額在內(nèi)的消費者都將會申請辦理金卡會員. 消費者在申請辦理會員時,需-次性繳清相應(yīng)等級的消費金額.該健身機構(gòu)在今年底將針對這些消費者舉辦消費返利活動,現(xiàn)有如下兩種預(yù)設(shè)方案:

方案 1:按分層抽樣從普通會員, 銀卡會員, 金卡會員中總共抽取 25 位“幸運之星”給予獎勵: 普通會員中的“幸運之星”每人獎勵 500 元; 銀卡會員中的“幸運之星”每人獎勵 600 元; 金卡會員中的“幸運之星”每人獎勵 800 .

方案 2:每位會員均可參加摸獎游戲,游戲規(guī)則如下:從-個裝有 3 個白球、 2 個紅球(球只有顏色不同)的箱子中, 有放回地摸三次球,每次只能摸-個球.若摸到紅球的總數(shù)消費金額/元為 2,則可獲得 200 元獎勵金; 若摸到紅球的總數(shù)為 3,則可獲得 300 元獎勵金;其他情況不給予獎勵. 規(guī)定每位普通會員均可參加 1 次摸獎游戲;每位銀卡會員均可參加 2 次摸獎游戲;每位金卡會員均可參加 3 次摸獎游戲(每次摸獎的結(jié)果相互獨立) .

以方案 2 的獎勵金的數(shù)學(xué)期望為依據(jù),請你預(yù)測哪-種方案投資較少?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點,C的左、右焦點,過的直線lC交于AB兩點,且的周長為

1)求C的方程;

2)若,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,曲線在點處的切線與直線平行,求的值;

2)若,且函數(shù)的值域為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)存在兩個物種,前者有充足的食物和生存空間,而后者僅以前者為食物,則我們稱前者為被捕食者,后者為捕食者.現(xiàn)在我們來研究捕食者與被捕食者之間理想狀態(tài)下的數(shù)學(xué)模型.假設(shè)捕食者的數(shù)量以表示,被捕食者的數(shù)量以表示.如圖描述的是這兩個物種隨時間變化的數(shù)量關(guān)系,其中箭頭方向為時間增加的方向.下列說法正確的是( )

A.若在、時刻滿足:,則

B.如果數(shù)量是先上升后下降的,那么的數(shù)量一定也是先上升后下降

C.被捕食者數(shù)量與捕食者數(shù)量不會同時到達(dá)最大值或最小值

D.被捕食者數(shù)量與捕食者數(shù)量總和達(dá)到最大值時,被捕食者的數(shù)量也會達(dá)到最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為4的正方形所在平面與正三角形所在平面互相垂直,分別為,的中點.

(Ⅰ)求證:平面平面;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知衡量病毒傳播能力的最重要指標(biāo)叫做傳播指數(shù)RO.它指的是,在自然情況下(沒有外力介入,同時所有人都沒有免疫力),一個感染到某種傳染病的人,會把疾病傳染給多少人的平均數(shù).它的簡單計算公式是:確認(rèn)病例增長率系列間隔,其中系列間隔是指在一個傳播鏈中,兩例連續(xù)病例的間隔時間(單位:天).根據(jù)統(tǒng)計,確認(rèn)病例的平均增長率為,兩例連續(xù)病例的間隔時間的平均數(shù)為天,根據(jù)以上RO數(shù)據(jù)計算,若甲得這種傳染病,則輪傳播后由甲引起的得病的總?cè)藬?shù)約為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線與直線垂直.

(Ⅰ)求的值;

(Ⅱ)當(dāng)時,恒成立,求實數(shù)的最大值.

查看答案和解析>>

同步練習(xí)冊答案