【題目】已知拋物線C:y2=4x和直線l:x=-1.
(1)若曲線C上存在一點Q,它到l的距離與到坐標原點O的距離相等,求Q點的坐標;
(2)過直線l上任一點P作拋物線的兩條切線,切點記為A,B,求證:直線AB過定點.
【答案】(1) ;(2)證明見解析.
【解析】試題分析:(1)設Q(x,y),則(x+1)2=x2+y2,又y2=4x,解得Q;(2)設點(-1,t)的直線方程為y-t=k(x+1),聯(lián)立y2=4x,則Δ=0,得k2+kt-1=0,則切點分別為A,B,所以A,B,F三點共線,AB過點F(1,0)。
試題解析:
(1)設Q(x,y),則(x+1)2=x2+y2,即y2=2x+1,
由解得Q.
(2)設過點(-1,t)的直線方程為y-t=k(x+1)(k≠0),代入y2=4x,得ky2-4y+4t+4k=0,
由Δ=0,得k2+kt-1=0,
特別地,當t=0時,k=±1,切點為A(1,2),B(1,-2),顯然AB過定點F(1,0).
一般地方程k2+kt-1=0有兩個根,
∴k1+k2=-t,k1k2=-1,
∴兩切點分別為A,B,
∴=,=,
又-=2=0,
∴與共線,又與有共同的起點F,
∴A,B,F三點共線,∴AB過點F(1,0),
綜上,直線AB過定點F(1,0).
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中
(1)當時,求函數(shù)在上的值域;
(2)若函數(shù)在上的最小值為3,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某大型水上樂園內(nèi)有一塊矩形場地米, 米,以為直徑的半圓和半圓(半圓在矩形內(nèi)部)為兩個半圓形水上主題樂園, 都建有圍墻,游客只能從線段處進出該主題樂園.為了進一步提高經(jīng)濟效益,水上樂園管理部門決定沿著修建不銹鋼護欄,沿著線段修建該主題樂園大門并設置檢票口,其中分別為上的動點, ,且線段與線段在圓心和連線的同側(cè).已知弧線部分的修建費用為元/米,直線部門的平均修建費用為元/米.
(1)若米,則檢票等候區(qū)域(其中陰影部分)面積為多少平方米?
(2)試確定點的位置,使得修建費用最低.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=|x+ |+|x﹣2m|(m>0). (Ⅰ)求證:f(x)≥8恒成立;
(Ⅱ)求使得不等式f(1)>10成立的實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正△ABC三個頂點都在半徑為2的球面上,球心O到平面ABC的距離為1,點E是線段AB的中點,過點E作球O的截面,則截面面積的最小值是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】參與舒城中學數(shù)學選修課的同學對某公司的一種產(chǎn)品銷量與價格進行了統(tǒng)計,得到如下數(shù)據(jù)和散點圖.
定價x(元/千克) | 10 | 20 | 30 | 40 | 50 | 60 |
年銷量y(千克) | 1150 | 643 | 424 | 262 | 165 | 86 |
z=2 ln y | 14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
參考數(shù)據(jù):
,
.
(1)根據(jù)散點圖判斷y與x,z與x哪一對具有較強的線性相關性(給出判斷即可,不必說明理由)?
(2)根據(jù)(1)的判斷結(jié)果及數(shù)據(jù),建立y關于x的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字).
(3)當定價為150元/千克時,試估計年銷量.
附:對于一組數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3),…,(xn,yn),其回歸直線x+的斜率和截距的最
小二乘估計分別為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某經(jīng)銷商計劃銷售一款新型的空氣凈化器,經(jīng)市場調(diào)研發(fā)現(xiàn)以下規(guī)律:當每臺凈化器的利潤為 x (單位:元, x 0 )時,銷售量 q(x) (單位:百臺)與 x 的關系滿足:若 x 不超過 20 , 則 ;若 x 大于或等于180 ,則銷售量為零;當 20 ≤ x ≤180 時,( a , b 為實常數(shù)).
(Ⅰ)求函數(shù) q(x) 的表達式;
(Ⅱ)當 x 為多少時,總利潤(單位:元)取得最大值,并求出該最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com