7.已知函數(shù)f(x)=2sinxcosx+2cos2x.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位后,得到函數(shù)y=g(x)的圖象,求方程g(x)=1在x∈[0,π]上的解集.

分析 (1)利用三角函數(shù)的恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的單調(diào)性即可得出結(jié)論.
(2)利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,由g(x)=1可得x的解集,結(jié)合范圍[0,π]即可得解.

解答 (本題滿分為10分)
解:(1)f(x)=2sinxcosx+2cos2x=sin2x+cos2x+1=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1,
由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$(k∈Z)得:kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,
∴f(x)的單調(diào)遞增區(qū)間是[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$](k∈Z).
(2)由已知,g(x)=f(x-$\frac{π}{4}$)=$\sqrt{2}$sin[2(x-$\frac{π}{4}$)+$\frac{π}{4}$]+1=$\sqrt{2}$sin(2x-$\frac{π}{4}$)+1,
由g(x)=1,得$\sqrt{2}$sin(2x-$\frac{π}{4}$)=0,
∴由2x-$\frac{π}{4}$=kπ,k∈Z,可得:x=$\frac{kπ}{2}$+$\frac{π}{8}$(k∈Z),
∵x∈[0,π],
∴x=$\frac{π}{8}$或$\frac{5π}{8}$,
∴方程的解集為{$\frac{π}{8}$,$\frac{5π}{8}$}.

點(diǎn)評(píng) 本題主要考查三角函數(shù)的恒等變換,正弦函數(shù)的單調(diào)性,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的左、右焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),過F1作與x軸不重合的直線l交橢圓于A,B兩點(diǎn).
(I)若△ABF2為正三角形,求橢圓的標(biāo)準(zhǔn)方程;
(II)若橢圓的離心率滿足$0<e<\frac{{\sqrt{5}-1}}{2}$,O為坐標(biāo)原點(diǎn),求證:∠AOB為鈍角.(可供參考:$\frac{{\sqrt{3}}}{3}<\frac{{\sqrt{5}-1}}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA⊥平面ABCD,E為PD的中點(diǎn).
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)設(shè)PA=1,∠ABC=60°,三棱錐E-ACD的體積為$\frac{{\sqrt{3}}}{8}$,求二面角D-AE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知三角形ABC內(nèi)的一點(diǎn)D滿足$\overrightarrow{DA}•\overrightarrow{DB}=\overrightarrow{DB}•\overrightarrow{DC}=\overrightarrow{DC}•\overrightarrow{DA}=-2$,且|$\overrightarrow{DA}$=|$\overrightarrow{DB}$|=|$\overrightarrow{DC}$|.平面ABC內(nèi)的動(dòng)點(diǎn)P,M滿足|$\overrightarrow{AP}$|=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,則$|\overrightarrow{BM}|$的最大值是$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在-360°~360°之間找出所有與下列各角終邊相同的角,并判斷各角所在的象限.
(1)790°
(2)-20°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若(a-2i)i2013=b-i,其中a,b∈R,i是虛數(shù)單位,則a2+b2等于5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.化簡:($\overrightarrow{AB}$+$\overrightarrow{OA}$)+($\overrightarrow{BC}$-$\overrightarrow{OC}$)=$\overrightarrow{0}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知斜率為2的直線的方程為5ax-5y-a+3=0,此直線在y軸上的截距為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.等差數(shù)列{an}中,a2=3,a3+a4=9,則a8的值為( 。
A.8B.9C.10D.11

查看答案和解析>>

同步練習(xí)冊答案