“實(shí)數(shù)”是“直線和直線 相互平行”的( )

A.充要條件 B.必要不充分條件

C.充分不必要條件 D.既不充分也不必要條件

A

【解析】

試題分析:由題可知,當(dāng)時,直線,直線,于是得出,又因?yàn)槿?img src="http://thumb.1010pic.com/pic6/res/GZSX/web/STSource/2015072006024912358064/SYS201507200602509674489502_DA/SYS201507200602509674489502_DA.004.png">,可得,解出;因此的充要條件;

考點(diǎn):兩條直線平行的條件

考點(diǎn)分析: 考點(diǎn)1:必要條件、充分條件與充要條件的判斷 【知識點(diǎn)的認(rèn)識】正確理解和判斷充分條件、必要條件、充要條件和非充分非必要以及原命題、逆命題否命題、逆否命題的概念是本節(jié)的重點(diǎn);掌握邏輯推理能力和語言互譯能力,對充要條件概念本質(zhì)的把握是本節(jié)的難點(diǎn).
1.充分條件:對于命題“若p則q”為真時,即如果p成立,那么q一定成立,記作“p?q”,稱p為q的充分條件.意義是說條件p充分保證了結(jié)論q的成立,換句話說要使結(jié)論q成立,具備條件p就夠了當(dāng)然q成立還有其他充分條件.如p:x≥6,q:x>2,p是q成立的充分條件,而r:x>3,也是q成立的充分條件.
必要條件:如果q成立,那么p成立,即“q?p”,或者如果p不成立,那么q一定不成立,也就是“若非p則非q”,記作“¬p?¬q”,這是就說條件p是q的必要條件,意思是說條件p是q成立的必須具備的條件.
充要條件:如果既有“p?q”,又有“q?p”,則稱條件p是q成立的充要條件,或稱條件q是p成立的充要條件,記作“p?q”.
2.從集合角度看概念:
如果條件p和結(jié)論q的結(jié)果分別可用集合P、Q 表示,那么
①“p?q”,相當(dāng)于“P?Q”.即:要使x∈Q成立,只要x∈P就足夠了--有它就行.
②“q?p”,相當(dāng)于“P?Q”,即:為使x∈Q成立,必須要使x∈P--缺它不行.
③“p?q”,相當(dāng)于“P=Q”,即:互為充要的兩個條件刻畫的是同一事物.
3.當(dāng)命題“若p則q”為真時,可表示為,則我們稱p為q的充分條件,q是p的必要條件.這里由,得出p為q的充分條件是容易理解的.但為什么說q是p的必要條件呢?事實(shí)上,與“”等價的逆否命題是“”.它的意義是:若q不成立,則p一定不成立.這就是說,q對于p是必不可少的,所以說q是p的必要條件.
4.“充要條件”的含義,實(shí)際上與初中所學(xué)的“等價于”的含義完全相同.也就是說,如果命題p等價于命題q,那么我們說命題p成立的充要條件是命題q成立;同時有命題q成立的充要條件是命題p成立.
【解題方法點(diǎn)撥】
1.借助于集合知識加以判斷,若P?Q,則P是Q的充分條件,Q是的P的必要條件;若P=Q,則P與Q互為充要條件.
2.等價法:“P?Q”?“¬Q?¬P”,即原命題和逆否命題是等價的;原命題的逆命題和原命題的否命題是等價的.
3.對于充要條件的證明,一般有兩種方法:其一,是用分類思想從充分性、必要性兩種情況分別加以證明;其二,是逐步找出其成立的充要條件用“?”連接.
【命題方向】
充要條件主要是研究命題的條件與結(jié)論之間的邏輯關(guān)系,它是中學(xué)數(shù)學(xué)最重要的數(shù)學(xué)概念之一,它是今后的高中乃至大學(xué)數(shù)學(xué)推理學(xué)習(xí)的基礎(chǔ).在每年的高考中,都會考查此類問題. 試題屬性
  • 題型:
  • 難度:
  • 考核:
  • 年級:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江西省高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

若函數(shù)至少有3個零點(diǎn),則實(shí)數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年湖南省株洲市高二上學(xué)期期末文科數(shù)學(xué)試卷(解析版) 題型:填空題

執(zhí)行如圖所示的程序框圖,若輸入的值為3,則輸出的值是 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年河北省高二上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分10分)已知為等比數(shù)列,其中,且成等差數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年河北省高二上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)滿足約束條件,若目標(biāo)函數(shù)的最大值為12,則的最小值為( )

A. B. C. D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年廣東省汕頭市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題14分)設(shè)函數(shù),

(1)當(dāng)時,求函數(shù)f(x)的零點(diǎn);

(2)當(dāng)時,判斷的奇偶性并給予證明;

(3)當(dāng)時,恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年廣東省汕頭市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè),則下列結(jié)論正確的是: .

的最小正周期為;

的圖像關(guān)于直線對稱;

的圖像關(guān)于點(diǎn)(,0)對稱;

④把圖像左移個單位,得到一個偶函數(shù)的圖像;

上為單調(diào)遞增函數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年廣東省高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知,函數(shù)

(1)求函數(shù)的最小正周期;

(2)已知,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年安徽省馬鞍山市高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)求下列各曲線的標(biāo)準(zhǔn)方程:

(1)實(shí)軸長為12,離心率為,焦點(diǎn)在軸上的橢圓;

(2)拋物線的焦點(diǎn)是雙曲線的左頂點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案