【題目】某校高二(1)班學(xué)生為了籌措經(jīng)費給班上購買課外讀物,班委會成立了一個社會實踐小組,決定利用暑假八月份(30天計算)輪流換班去銷售一種時令水果.在這30天內(nèi)每斤水果的收入(元)與時間(天)的部分?jǐn)?shù)據(jù)如下表所示,已知日銷售(斤)與時間(天)滿足一次函數(shù)關(guān)系.

(1)根據(jù)提供的圖象和表格,下廚每斤水果的收入(元)與時間(天)所滿足的函數(shù)關(guān)系式及日銷售量(斤)與時間(天)的一次函數(shù)關(guān)系;

(2)用(元)表示銷售水果的日收入,寫出的函數(shù)關(guān)系式,并求這30天中第幾天日收入最大,最大值為多少元?

【答案】1見解析2)在第十天時日收入最大,最大值為90.

【解析】試題分析:(1)可設(shè),由線段過點 ;的值,由線段過點, 的值,從而可得結(jié)果;(2)先求出銷售水果的日收入的函數(shù)關(guān)系式,利用二次函數(shù)分別判斷出,兩段函數(shù)的單調(diào)性,利用單調(diào)性分別求出最大值,再比較大小即可.

試題解析:1)依題意可設(shè),當(dāng)時,線段過點,

當(dāng)時,線段過點 .

所以.

,由表中數(shù)據(jù)得,所以.

2)由

當(dāng)時, 上的單調(diào)遞增,在上單調(diào)遞減,所以當(dāng)時, 有最大值為元;當(dāng)時, 上單調(diào)遞減,所以.

綜合上述得:在第十天時日收入最大,最大值為90.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求函數(shù)y= 的定義域、值域和單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=ax2+2(a﹣3)x+1在區(qū)間[﹣2,+∞)上遞減,則實數(shù)a的取值范圍是(
A.(﹣∞,﹣3]
B.[﹣3,0]
C.[﹣3,0)
D.[﹣2,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》有“今有金箠,長五尺,斬本一尺,重四斤,斬末一尺,重二斤,問次一尺各重幾何?”意思是:“現(xiàn)有一根金箠,一頭粗,一頭細(xì),在粗的一端截下1尺,重4斤;在細(xì)的一端截下1尺,重2斤;問依次每一尺各重多少斤?”根據(jù)上題的已知條件,若金箠由粗到細(xì)是依次等量減小的,則正中間一尺的重量為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】盒中有6只燈泡,其中有2只是次品,4只是正品.從中任取2只,試求下列事件的概率.
(Ⅰ)取到的2只都是次品;
(Ⅱ)取到的2只中恰有一只次品.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, 分別為等差數(shù)列和等比數(shù)列, 的前項和為.函數(shù)的導(dǎo)函數(shù)是,有,且是函數(shù)的零點.

(1)求的值;

(2)若數(shù)列公差為,且點,當(dāng)時所有點都在指數(shù)函數(shù)的圖象上.

請你求出解析式,并證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次水下考古活動中,某一潛水員需潛水50米到水底進(jìn)行考古作業(yè),其用氧量包含以下三個方面:

①下潛平均速度為米/分鐘,每分鐘的用氧量為升;

②水底作業(yè)時間范圍是最少10分鐘最多20分鐘,每分鐘用氧量為0.3升;

③返回水面時,平均速度為米/分鐘,每分鐘用氧量為0.32升;潛水員在此次考古活動中的總用氧量為升.

(1)如果水底作業(yè)時間是10分鐘,將表示為的函數(shù);

(2)若,水底作業(yè)時間為20分鐘,求總用氧量的取值范圍;

(3)若潛水員攜帶氧氣13.5升,請問潛水員最多在水下多少分鐘(結(jié)果取整數(shù))?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 ,橢圓的長軸為短軸,且與有相同的離心率.

(1)求橢圓的方程;

(2)設(shè)為坐標(biāo)原點,點分別在橢圓上, ,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 是定義在(﹣∞,+∞)上的奇函數(shù),且滿足
(1)求實數(shù)a,b,并確定函數(shù)f(x)的解析式
(2)用定義證明f(x)在(﹣1,1)上是增函數(shù).

查看答案和解析>>

同步練習(xí)冊答案