【題目】如圖,四棱錐S﹣ABCD的底面為正方形,SD⊥底面ABCD,則下列結(jié)論中不正確的是( )
A.AC⊥SB
B.AB∥平面SCD
C.SA與平面SBD所成的角等于SC與平面SBD所成的角
D.AB與SC所成的角等于DC與SA所成的角
【答案】D
【解析】解:∵SD⊥底面ABCD,底面ABCD為正方形,
∴連接BD,則BD⊥AC,根據(jù)三垂線定理,可得AC⊥SB,故A正確;
∵AB∥CD,AB平面SCD,CD平面SCD,
∴AB∥平面SCD,故B正確;
∵SD⊥底面ABCD,
∠ASO是SA與平面SBD所成的角,∠CSO是SC與平面SBD所成的,
而△SAO≌△CSO,
∴∠ASO=∠CSO,即SA與平面SBD所成的角等于SC與平面SBD所成的角,故C正確;
∵AB∥CD,∴AB與SC所成的角是∠SCD,DC與SA所成的角是∠SAB,
而這兩個角顯然不相等,故D不正確;
故選D.
【考點精析】利用直線與平面垂直的性質(zhì)對題目進行判斷即可得到答案,需要熟知垂直于同一個平面的兩條直線平行.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l與圓C:x2+y2+2x﹣4y+a=0相交于A,B兩點,弦AB的中點為M(0,1).
(1)求實數(shù)a的取值范圍以及直線l的方程;
(2)若圓C上存在動點N使CN=2MN成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a≠0,集合A={x|x2﹣x﹣6<0},B={x|x2+2x﹣8≥0},C={x|x2﹣4ax+3a2<0},且C(A∩RB).求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)為了對新研發(fā)的一批產(chǎn)品進行合理定價,將產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:
已知
(1)求的值
(2)已知變量具有線性相關性,求產(chǎn)品銷量關于試銷單價的線性回歸方程 可供選擇的數(shù)據(jù)
(3)用表示(2)中所求的線性回歸方程得到的與對應的產(chǎn)品銷量的估計值。當銷售數(shù)據(jù)對應的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”。試求這6組銷售數(shù)據(jù)中的 “好數(shù)據(jù)”。
參考數(shù)據(jù):線性回歸方程中的最小二乘估計分別是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,A(a,0)(a>0),B(0,a),C(﹣4,0),D(0,4)設△AOB的外接圓圓心為E.
(1)若⊙E與直線CD相切,求實數(shù)a的值;
(2)設點P在圓E上,使△PCD的面積等于12的點P有且只有三個,試問這樣的⊙E是否存在,若存在,求出⊙E的標準方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,△ABC是等邊三角形,D是AC的中點,PA=PC,二面角P﹣AC﹣B的大小為60°;
(1)求證:平面PBD⊥平面PAC;
(2)求AB與平面PAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,g(x)=xlnx﹣a(x﹣1).
(1)求函數(shù)f(x)在點(4,f(4))處的切線方程;
(2)若對任意x∈(0,+∞),不等式g(x)≥0恒成立,求實數(shù)a的取值的集合M;
(3)當a∈M時,討論函數(shù)h(x)=f(x)﹣g(x)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(1,3)B(3,1),C(﹣1,0)求:
(1)求BC及BC邊上的中線所在直線的方程;
(2)求BC邊上的垂直平分線所在直線方程;
(3)求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com