8.設${({2x+\frac{1}{2}})^{10}}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{10}}{x^{10}}$.
(1)求a0+a1+a2+…+an;
(2)記an(0≤n≤10)的最大值.

分析 (1)在所給的等式中,令n=1,可得a0+a1+a2+…+an的值.
(2)由題意可得an為xn的系數(shù),利用通項公式可得an=${C}_{10}^{n}$•210-2n,檢驗可得an的最大值.

解答 解:(1)在設${({2x+\frac{1}{2}})^{10}}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{10}}{x^{10}}$中,令x=1,可得a0+a1+a2+…+an=${(\frac{5}{2})^{10}}$.
(2)∵由題意可得an為xn的系數(shù),∴an=${C}_{10}^{n}$•210-n•${(\frac{1}{2})}^{n}$=${C}_{10}^{n}$•210-2n,
再根據(jù)0≤n≤10,檢驗可得,當n=2時,an=${C}_{10}^{n}$•210-2n 取得最大值為a2=2880.

點評 本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.函數(shù)f(x)=$\sqrt{x}$+lg(2-2x)的定義域是[0,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某射手射擊一次射中10環(huán),9環(huán),8環(huán),7環(huán)的概率分別是0.2,0.3,0.1,0.1,計算這名射手射擊一次:
(1)射中10環(huán)或9環(huán)的概率;
(2)至少射中7環(huán)概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.函數(shù)y=x3-2x2-9x+31的駐點為$\frac{-2±\sqrt{34}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在正項等比數(shù)列{an}中,前n項和為${S_n},{a_5}=\frac{1}{2},{a_6}+{a_7}=3,則{S_5}$=$\frac{31}{32}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在一個周期內(nèi)的圖象如圖所示.
(1)求函數(shù)的解析式;
(2)將函數(shù)y=f(x)圖象向上平移1個單位,再將所得圖象上的點橫坐標縮短為原來的$\frac{1}{2}$,縱坐標不變,得到函數(shù)y=g(x)的圖象,求y=g(x)在[0,$\frac{π}{2}$]上的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左頂點為A,右焦點為F,右準線為l,l與x軸相交于點T,且F是AT的中點.
(1)求橢圓的離心率;
(2)過點T的直線與橢圓相交于M,N兩點,M,N都在x軸上方,并且M在N,T之間,且NF=2MF.
①記△NFM,△NFA的面積分別為S1,S2,求$\frac{S_1}{S_2}$;
②若原點O到直線TMN的距離為$\frac{{20\sqrt{41}}}{41}$,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.如圖,半徑為5cm的圓形紙板內(nèi)有一個相同圓心的半徑為1cm的小圓區(qū)域,現(xiàn)將半徑為1cm的一枚硬幣拋到此紙板上,使整塊硬幣隨機完全落在紙板內(nèi),則硬幣與小圓無公共點的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.求實數(shù)m的值,使復數(shù)z=(m2-5m+6)+(m2-3m)i分別是
(1)實數(shù); 
(2)純虛數(shù); 
(3)零.

查看答案和解析>>

同步練習冊答案