函數(shù)f(x)=cos(2x-
π
3
)+2sin(x-
π
4
)sin(x+
π
4
)圖象的對(duì)稱軸方程是
 
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:利用兩角差的余弦公式,誘導(dǎo)公式及二倍角正弦公式將f(x)化為一角一函數(shù)形式得出f(x)=sin(2x-
π
6
),將2x-
π
6
看作整體借助于正弦函數(shù)的對(duì)稱軸方程求解.
解答: 解:f(x)=cos(2x-
π
3
)+2sin(x-
π
4
)sin(x+
π
4

=
1
2
cos2x+
3
2
sin2x+sin(2x-
π
2

=
1
2
cos2x+
3
2
sin2x-
1
2
cos2x
=-
1
2
cos2x+
3
2
sin2x
=sin(2x-
π
6
).
由2x-
π
6
=kπ+
π
2
,k∈Z得圖象的對(duì)稱軸方程 x=
2
+
π
3
,k∈Z
故答案為:x=
2
+
π
3
,(k∈Z)
點(diǎn)評(píng):本題考查利用三角公式進(jìn)行恒等變形的技能以及運(yùn)算能力,三角函數(shù)的圖象和性質(zhì),考查了整體換元的思想方法,考查了轉(zhuǎn)化思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某公司為了了解本公司職員的早餐費(fèi)用情況,抽樣調(diào)査了100位職員的早餐日平均費(fèi)用(單位:元),得到如圖所示的頻率分布直方圖,圖中標(biāo)注a的數(shù)字模糊不清.
(1)試根據(jù)頻率分布直方圖求a的值,并估計(jì)該公司職員早餐日平均費(fèi)用的眾數(shù);
(2)已知該公司有1000名職員,試估計(jì)該公司有多少職員早餐日平均費(fèi)用不少于8元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,設(shè)
AB
BC
的夾角為θ,已知
AB
BC
=6,且2
3
≤|
AB
||
BC
|sin(π-θ)≤6.
(1)求θ的取值范圍;
(2)求函數(shù)f(θ)=
1-
2
cos(2θ-
π
4
)
sinθ
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正四面體ABCD中,E為AD的中點(diǎn),則異面直線AB與CE所成角的余弦值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=sin(2x+φ)在(
π
4
,
π
3
)上單調(diào)遞增,其中φ∈(π,2π),則φ的取值范圍為( 。
A、[
7
6
π,2π)
B、(π,
11
6
π]
C、[
7
6
π,
11
6
π]
D、[
11
6
π,2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明:
1+cscα+cotα
1+cscα-cotα
=cscα+cotα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正方體ABCD-A1B1C1D1中,已知M是棱AB的中點(diǎn),求C1M與平面BCD1A1所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖一是火力發(fā)電廠煙囪示意圖.它是雙曲線繞其一條對(duì)稱軸旋轉(zhuǎn)一周形成的幾何體,煙囪最細(xì)處的直徑為10m,最下端的直徑為12m,最細(xì)處離地面6m,煙囪高14m,試求該煙囪占有空間的大小.(精確到0.1m3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式an=2n-
n
2n-1
,求an的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案