12.在等差數(shù)列{an}中,a2=0,a4=4,則{an}的前5項和S5=(  )
A.20B.14C.12D.10

分析 利用等差數(shù)列的通項公式及其前n項和公式即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,∵a2=0,a4=4,
∴$\left\{\begin{array}{l}{{a}_{1}+d=0}\\{{a}_{1}+3d=4}\end{array}\right.$,解得a1=-2,d=2.
則{an}的前5項和S5=-5×2+$\frac{5×4}{2}×2$=10.
故選:D.

點評 本題考查了等差數(shù)列的通項公式及其前n項和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知實數(shù)a>0且a≠1,設(shè)x=loga(a2+2),y=loga(a3+2),則x、y的大小關(guān)系是(  )
A.x>yB.x<yC.x=yD.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…+$\frac{{x}^{2015}}{2015}$-$\frac{{x}^{2016}}{2016}$在區(qū)間[-2,2]上的零點個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.實數(shù)x、y滿足$\left\{\begin{array}{l}{y≤x+1}\\{y≥-x+1}\\{x≤3}\end{array}\right.$,這Z=3x+4y,則Z的取值范圍是(  )
A.[1,25]B.[4,25]C.[1,4]D.[5,24]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)f(x)對任意實數(shù)x滿足f(x)=-f(x+2),且當(dāng)0≤x≤2時,f(x)=x(2-x),若關(guān)于x的方程f(x)=kx有3個不等的實數(shù)解,則k的取值范圍是(10-4$\sqrt{6}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩焦點為F1(-c,0),F(xiàn)2(c,0)(c>0),離心率e=$\frac{\sqrt{3}}{2}$,橢圓上右頂點到右焦點的距離為2-$\sqrt{3}$,則橢圓的方程為$\frac{{x}^{2}}{4}+{y}^{2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在二項式${(\root{3}{x}-\frac{1}{{2\root{3}{x}}})^n}$的展開式中,前三項系數(shù)的絕對值成等差數(shù)列.
(1)求展開式的第四項;
(2)求展開式的常數(shù)項;
(3)求展開式中各項的系數(shù)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若變量x,y滿足約束條件$\left\{\begin{array}{l}x-2y≤0\\ x-y+1≥0\\ x+2y≤2\end{array}\right.$,則目標(biāo)函數(shù)z=x+y的最小值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=lnx-$\frac{(x-1)^{2}}{2}$,g(x)=x-1.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若關(guān)于x的方程f(x)-g(x)+a=0在區(qū)間($\frac{1}{e}$,e)上有兩個不等的根,求實數(shù)a的取值范圍;
(3)若存在x0>1,當(dāng)x∈(1,x0)時,恒有f(x)>kg(x),求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案