14.計(jì)算定積分${∫}_{1}^{3}$(2x-$\frac{1}{x^2}$)dx的值是( 。
A.0B.$\frac{22}{3}$C.$\frac{11}{3}$D.$\frac{3}{11}$

分析 根據(jù)定積分的計(jì)算法則計(jì)算即可.

解答 解:${∫}_{1}^{3}$(2x-$\frac{1}{x^2}$)dx=(x2+$\frac{1}{x}$)|${\;}_{1}^{3}$=(9+$\frac{1}{3}$)-(1+1)=$\frac{22}{3}$,
故選:B.

點(diǎn)評(píng) 本題考查了定積分的計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知拋物線C:y2=2px(p>0)的焦點(diǎn)F與橢圓C':$\frac{x^2}{6}+\frac{y^2}{5}$=1的一個(gè)焦點(diǎn)重合,點(diǎn)A(x0,2)在拋物線上,過焦點(diǎn)F的直線l交拋物線于M、N兩點(diǎn).
(1)求拋物線C的方程以及|AF|的值;
(2)記拋物線C的準(zhǔn)線與x軸交于點(diǎn)B,若$\overrightarrow{MF}=λ\overrightarrow{FN}$,|BM|2+|BN|2=40,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.F1、F2是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),過F2的直線l與雙曲線的兩支分別交于點(diǎn)A、B,若△ABF1為等邊三角形,則雙曲線的離心率為( 。
A.4B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在以A,B,C,D,E,F(xiàn)為頂點(diǎn)的三棱柱中,面ABEF為正方形,點(diǎn)G,H,M分別是棱AB,AF,CD的中點(diǎn),∠AFD=90°.
(1)求證:AF⊥平面EFDC;
(2)求證:平面DGH∥平面BFM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=aln(x+1)-$\frac{1}{2}$x2
(1)若函數(shù)f(x)在定義域內(nèi)單調(diào)遞減,求a的范圍.
(2)若a=2,且f(x1)=f(x2),求證:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此進(jìn)行了5次試驗(yàn),得到5組數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3),(x4,y4)(x5,y5).根據(jù)收集到的數(shù)據(jù)可知$\overrightarrow{x}$=20,由最小二乘法求得回歸直線方程為$\stackrel{∧}{y}$=0.6x+48,則$\sum_{i=1}^5{y_i}$=( 。
A.60B.120C.150D.300

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.(x-y)(x+2y+z)6的展開式中,xy3z3項(xiàng)的系數(shù)為-80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知0<θ<$\frac{π}{2}$,若cos2θ+2msinθ-2m-2<0對(duì)任意實(shí)數(shù)θ恒成立,則實(shí)數(shù)m應(yīng)滿足的條件是($-\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.空間有四個(gè)點(diǎn),如果其中任意三個(gè)點(diǎn)不共線,則經(jīng)過其中三個(gè)點(diǎn)的平面有(  )
A.2個(gè)或3個(gè)B.1個(gè)或3個(gè)C.1個(gè)或4個(gè)D.4個(gè)或3個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案