已知cos(π+x)=
1
2
,且sin2x>0,則sinx=
 
考點:同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:已知等式左邊利用誘導公式化簡求出cosx的值小于0,根據(jù)sin2x=2sinxcosx>0,得到sinx小于0,利用同角三角函數(shù)間基本關(guān)系求出sinx的值即可.
解答: 解:∵cos(π+x)=-cosx=
1
2
,即cosx=-
1
2
,且sin2x=2sinxcosx>0,
∴sinx<0,
則sinx=-
1-cos2x
=-
3
2
,
故答案為:-
3
2
點評:此題考查了同角三角函數(shù)基本關(guān)系的運用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

經(jīng)過圓C:(x+1)2+(y-2)2=4的圓心且法向量為
n
=(-1,1)
的直線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(2-3a)-
1
2
(2a+1)-
1
2
,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某臺小型晚會由7個節(jié)目組成,其中4個舞蹈類節(jié)目,3個歌唱類節(jié)目,安排演出順序時,導演要求最后一個舞蹈類節(jié)目必須排在第6位演出,該臺晚會節(jié)目演出順序的編排方案有
 
種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tan(α+
π
4
)=3.
(1)求tanα;
(2)求sin2α+cos2α.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanα=-2,則
sinα-3cosα
sinα+cosα
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x),若?a,b,c∈R,f(a),f(b),f(c)為某一三角形的三邊長,則稱f(x)為“可構(gòu)造三角形函數(shù)”,已知函數(shù)f(x)=
ex+t
ex+1
是“可構(gòu)造三角形函數(shù)”,則實數(shù)t的取值范圍是( 。
A、[0,+∞)
B、[0,1]
C、[1,2]
D、[
1
2
,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(cosx-1)=cos2x,求f(x)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=2,an+1=an2+2an(n∈N+).
(1)證明:數(shù)列{log2(an+1)}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)記bn=
1
an
+
1
an+2
,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案