【題目】如圖,四棱錐中,底面ABCD,

求證:平面PAC;

若側(cè)棱PC上的點F滿足,求三棱錐的體積.

【答案】(1)見解析 (2)

【解析】

試題(1)由于可以證明要證明只需證明從而中的兩條相交直線,2)由(1)知為等腰三角形,面積容易求出,考慮以BCD為底面.F為頂點 的三棱錐,以及以BCD為底面,P為頂點的三棱錐面積容易求出,所以

試題解析:(1)證明:因為BC=CD,所以△BCD為等腰三角形,

∠ACB=∠ACD,BD⊥AC. 因為PA⊥底面ABCD,所以PA⊥BD

從而BD與平面PAC內(nèi)兩條相交直線PA,AC都垂直, 所以BD⊥平面PAC

2)解:三棱錐PBCD的底面BCD的面積SBCD=BC·CD·sin∠BCD=×2×2×sin=

PA⊥底面ABCD,=·SBCD·PA=××2=2

PF=7FC,得三棱錐FBCD的高為PA,

=·SBCD·PA=×××2=,

所以=-=2-=

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知為坐標原點,橢圓的左、右焦點分別為,,右頂點為,上頂點為,若,,成等比數(shù)列,橢圓上的點到焦點的距離的最大值為

求橢圓的標準方程;

過該橢圓的右焦點作兩條互相垂直的弦,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C (a>b>0)的一個頂點為A(2,0),離心率為.直線yk(x-1)與橢圓C交于不同的兩點MN.

(1)求橢圓C的方程;

(2)當△AMN的面積為時,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】黃岡市的天氣預報顯示,大別山區(qū)在今后的三天中,每一天有強濃霧的概率為,現(xiàn)用隨機模擬的方法估計這三天中至少有兩天有強濃霧的概率:先利用計算器產(chǎn)生之間整數(shù)值的隨機數(shù),并用0,1,2,3,4,5表示沒有強濃霧,用6,7,8,9表示有強濃霧,再以每3個隨機數(shù)作為一組,代表三天的天氣情況,產(chǎn)生了如下20組隨機數(shù):

779 537 113 730 588 506 027 394 357 231

683 569 479 812 842 273 925 191 978 520

則這三天中至少有兩天有強濃霧的概率近似為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以為極點,軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,曲線的極坐標方程為,曲線的極坐標方程為.

1)求的直角坐標方程;

2)若的交于點,交于兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校參加高一年級期中考試的學生中隨機抽出60名學生,將其數(shù)學成績分成六段、、后得到如圖部分頻率分布直方圖,觀察圖形的信息,回答下列問題:

求分數(shù)在內(nèi)的頻率,并補全這個頻率分布直方圖;

統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此估計本次考試的平均分;

若從60名學生中隨抽取2人,抽到的學生成績在記0分,在記1分,在記2分,用表示抽取結(jié)束后的總記分,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)有3個不同零點,則實數(shù)a的取值范圍____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某公司舉行的年終慶典活動中,主持人利用隨機抽獎軟件進行抽獎:由電腦隨機生成一張如圖所示的33表格,其中1格設(shè)獎300元,4格各設(shè)獎200元,其余4格各設(shè)獎100元,點擊某一格即顯示相應金額.某人在一張表中隨機不重復地點擊3格,記中獎的總金額為X元.

1)求概率;

2)求的概率分布及數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓C:的離心率為,其右焦點到橢圓C外一點的距離為,不過原點O的直線l與橢圓C相交于A,B兩點,且線段AB的長度為2.

1求橢圓C的方程;

2面積S的最大值.

查看答案和解析>>

同步練習冊答案