(本小題滿分13分)
已知拋物線、橢圓和雙曲線都經(jīng)過(guò)點(diǎn),它們?cè)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002935496262.png" style="vertical-align:middle;" />軸上有共同焦點(diǎn),橢圓和雙曲線的對(duì)稱軸是坐標(biāo)軸,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn).
(1)求這三條曲線的方程;
(2)對(duì)于拋物線上任意一點(diǎn),點(diǎn)都滿足,求的取值范圍.
(1);(2)。

試題分析:(1)設(shè)拋物線方程為,將代入方程得
-------------------2分
由題意知橢圓、雙曲線的焦點(diǎn)為----------------3分
對(duì)于橢圓,
,
所以橢圓方程為----------------5分
對(duì)于雙曲線,
,
所以雙曲線方程為----------------7分
(2)設(shè)------------(8分)
---------------(9分)
恒成立------------------(10分)
----------------(12分)
-----------(13分)
點(diǎn)評(píng):中檔題,曲線關(guān)系問(wèn)題,往往通過(guò)聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題求橢圓、雙曲線標(biāo)準(zhǔn)方程時(shí),主要運(yùn)用了曲線的定義,求拋物線方程則利用了待定系數(shù)法。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓的離心率為,橢圓短軸長(zhǎng)為
(Ⅰ)求橢圓的方程;
(Ⅱ)已知?jiǎng)又本與橢圓相交于、兩點(diǎn). ①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;②若點(diǎn),求證:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓的焦點(diǎn)在軸上,離心率為,則的值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓+=1(a>b>0)的離心率是,則的最小值為(    )
A.B.1C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,其中左焦點(diǎn)(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)M在圓x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),它的準(zhǔn)線經(jīng)過(guò)雙曲線的左焦點(diǎn)且垂直于的兩個(gè)焦點(diǎn)所在的軸,若拋物線與雙曲線的一個(gè)交點(diǎn)是
(1)求拋物線的方程及其焦點(diǎn)的坐標(biāo);
(2)求雙曲線的方程及其離心率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,焦距等于6,離心率等于,則此橢圓的方程是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知A、B、C是橢圓上的三點(diǎn),點(diǎn)F(3,0),若,則    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

點(diǎn)P在雙曲線上•,是這條雙曲線的兩個(gè)焦點(diǎn),
,且的三條邊長(zhǎng)成等差數(shù)列,則此雙曲線的離心率是         

查看答案和解析>>

同步練習(xí)冊(cè)答案