函數(shù)f(x)對于任意實數(shù)x滿足條件f(x+2)=
1
f(x)
,若f(1)=-5,則f[f(9)]=
 
考點:函數(shù)的周期性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:本題可以先利用條件f(x+2)=
1
f(x)
,得到函數(shù)的周期性,再將自變量轉(zhuǎn)化成1,得到本題結(jié)論.
解答: 解:∵任意實數(shù)x滿足條件f(x+2)=
1
f(x)
,
f(x+4)=
1
f(x+2)
,
∴f(x+4)=f(x).
∴函數(shù)f(x)的周期為4.
∴f(9)=f(9-8)=f(1)=-5.
∴f[f(9)]=f(-5)=f(-5+8)=f(3)=f(2+1)=
1
f(1)
=-
1
5

故答案為:-
1
5
點評:本題考查了函數(shù)的周期性、函數(shù)解析式,本題難度不大,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=mx+
1
x+n
(m,n∈Z),曲線Y=f(x)在點(2,f(2))處的切線方程為y=3
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)設(shè)g(x)=aln(x-1)-x(a>0),若函數(shù)F(x)=f(x)+g(x)與x軸有兩個交點,求實數(shù)a的取值范圍;
(Ⅲ)證明:曲線y=f(x)上任意一點的切線與直線x=1和直線y=x所圍成的三角形面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=(1,2),b=(0,1),c=(一2,k),若(a+2b)⊥c,則k=( 。
A、
1
2
B、2
C、-
1
2
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(2x+
π
3
)
的圖象按向量
a
平移后所得的圖象關(guān)于點(-
π
12
,0)
中心對稱.則向量
a
可以為( 。
A、(
π
12
,0)
B、(
π
6
,0)
C、(-
π
12
,0)
D、(-
π
6
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(sinx+cosx,2cosx),
n
=(sinx+cosx,cosx),記f(x)=
m
n

(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若方程f(x)-1=0在區(qū)間(0,π)內(nèi)有兩個零點x1,x2,求x1+x2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)在區(qū)間(-∞,0)上為增函數(shù)的是( 。
A、y=1
B、y=-
1
x
+2
C、y=-x2-2x-1
D、y=1+x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)f(x)滿足f(x+2)=-f(x),且在[-6,-4]上是增函數(shù),在銳角△ABC中,令m=f(sinA+sinB),n=f(cosA+cosC),則m和n的大小關(guān)系為( 。
A、m>nB、m<n
C、m=nD、不能確定大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某程序框圖如圖所示,則該程序運行后輸出的k值是( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,直線l1經(jīng)過橢圓的上頂點A和右頂點B,并且和圓x2+y2=
4
5
相切.
(1)求橢圓C的方程;
(2)設(shè)直線l2:y=kx+m(|m|∈[
1
2
,1]) 與橢圓C相交于M,N兩點,以線段OM,ON為鄰邊作平行四邊行OMPN,其中頂點P在橢圓C上,O為坐標(biāo)原點,求|OP|的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案