10.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率e=$\sqrt{2}$,且它的一個頂點到較近焦點的距離為$\sqrt{2}$-1,則雙曲線C的方程為x2-y2=1.

分析 根據(jù)題意,由雙曲線的幾何性質(zhì)分析可得

解答 解:根據(jù)題意,雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的離心率e=$\sqrt{2}$,
則有e2=$\frac{{c}^{2}}{{a}^{2}}$=1+$\frac{^{2}}{{a}^{2}}$=2,
即a2=b2,
c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{2}$a,
又由它的一個頂點到較近焦點的距離為$\sqrt{2}$-1,
則有c-a=$\sqrt{2}$-1,即$\sqrt{2}$a-a=$\sqrt{2}$-1,
解可得a=1,
則b=1,
則雙曲線的方程為:x2-y2=1;
故答案為:x2-y2=1.

點評 本題考查雙曲線的幾何性質(zhì),關(guān)鍵是利用雙曲線的幾何性質(zhì)構(gòu)造方程組.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為了解人們對城市治安狀況的滿意度,某部門對城市部分居民的“安全感”進(jìn)行調(diào)查,在調(diào)查過程中讓每個居民客觀地對自己目前生活城市的安全感進(jìn)行評分,并把所得分作為“安全感指數(shù)”,即用區(qū)間[0,100]內(nèi)的一個數(shù)來表示,該數(shù)越接近100表示安全感越高.現(xiàn)隨機對該地區(qū)的男、女居民各500人進(jìn)行了調(diào)查,調(diào)查數(shù)據(jù)如表所示:
安全感指數(shù)[0,20)[20,40)[40,60)[60,80)[80,100]
男居民人數(shù)816226131119
女居民人數(shù)1214174122178
根據(jù)表格,解答下面的問題:
(Ⅰ)估算該地區(qū)居民安全感指數(shù)的平均值;
(Ⅱ)如果居民安全感指數(shù)不小于60,則認(rèn)為其安全感好.為了進(jìn)一步了解居民的安全感,調(diào)查組又在該地區(qū)隨機抽取3對夫妻進(jìn)行調(diào)查,用X表示他們之中安全感好的夫妻(夫妻二人都感到安全)的對數(shù),求X的分布列及期望(以樣本的頻率作為總體的概率).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知曲線C:$\frac{x^2}{4}+\frac{y^2}{3}$=1(y≥0),直線l:y=kx+1與曲線C交于A,D兩點,A,D兩點在x軸上的射影分別為點B,C.記△OAD的面積S1,四邊形ABCD的面積為S2
(Ⅰ)當(dāng)點B坐標(biāo)為(-1,0)時,求k的值;
(Ⅱ)若S1=$\frac{{2\sqrt{30}}}{7}$,求線段AD的長;
(Ⅲ)求$\frac{S_1}{S_2}$的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.現(xiàn)有若干(大于20)件某種自然生長的中藥材,從中隨機抽取20件,其重量都精確到克,規(guī)定每件中藥材重量不小于15克為優(yōu)質(zhì)品.如圖所示的程序框圖表示統(tǒng)計20個樣本中的優(yōu)質(zhì)品,其中m表示每件藥材的重量,則圖中①,②兩處依次應(yīng)該填的整數(shù)分別是(  )
A.14,19B.14,20C.15,19D.15,20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知等比數(shù)列{an}中,a3=4,a6=$\frac{1}{2}$,則公比q=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知向量$\overrightarrow{m}$=($\sqrt{3}$cosωx,cosωx),$\overrightarrow{n}$=(sinωx,cosωx)(ω>0),函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$的最小正周期為π.
(Ⅰ)求ω的值及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在鈍角△ABC中,角A,B,C所對的邊分別為a,b,c,已知a=1,b=$\sqrt{3}$,當(dāng)f(A)取得最大值時,求邊c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知直線l:$\left\{{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}}$(其中t為參數(shù),α為傾斜角).以坐標(biāo)原點O為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=$\frac{cosθ}{{{{sin}^2}θ}}$.
(1)求C的直角坐標(biāo)方程,并求C的焦點F的直角坐標(biāo);
(2)已知點P(1,0),若直線l與C相交于A,B兩點,且$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$=2,求△FAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)函數(shù)f(x)=ex+2x-a(a∈R,e為自然對數(shù)的底數(shù)),若曲線$\frac{{x}^{2}}{4}$+y2=1上存在點(x0,y0),使得f(f(y0))=y0,則實數(shù)a的取值范圍是[-1+e-1,e+1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如果執(zhí)行如圖的程序框圖,輸出的S=30,則判斷框處為( 。
A.k<5B.k≤5C.k≥6D.k>6

查看答案和解析>>

同步練習(xí)冊答案