18.現(xiàn)有若干(大于20)件某種自然生長的中藥材,從中隨機(jī)抽取20件,其重量都精確到克,規(guī)定每件中藥材重量不小于15克為優(yōu)質(zhì)品.如圖所示的程序框圖表示統(tǒng)計(jì)20個(gè)樣本中的優(yōu)質(zhì)品,其中m表示每件藥材的重量,則圖中①,②兩處依次應(yīng)該填的整數(shù)分別是( 。
A.14,19B.14,20C.15,19D.15,20

分析 要統(tǒng)計(jì)20個(gè)樣本中的優(yōu)質(zhì)品數(shù),模擬程序的運(yùn)行過程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:由題意,模擬程序的運(yùn)行,可得:
要統(tǒng)計(jì)20個(gè)樣本中的優(yōu)質(zhì)品數(shù),每件中藥材重量不小于15克為優(yōu)質(zhì)品.
故當(dāng)m>14時(shí),執(zhí)行循環(huán)體,k=k+1,計(jì)數(shù)器k的值加1,
當(dāng)n=19時(shí),輸入了20個(gè)m的值,故當(dāng)n>19時(shí),退出循環(huán),輸出k的值.
故①,②兩處依次應(yīng)該填的整數(shù)分別是14,19.
故選:A.

點(diǎn)評 本題考查了程序框圖的應(yīng)用問題,解題時(shí)應(yīng)模擬程序框圖的運(yùn)行過程,以便得出正確的結(jié)論,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}滿足a1=-2,an+1=2an+4.
( I)求證{an+4}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
( II)求數(shù)列{an}的前n項(xiàng)的和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={x|y=log2(3-x)},B={x||2x-1|>1},則A∩B=( 。
A.{x|1<x<3}B.{x|-1<x<3}C.{x|x<0或0<x<3}D.{x|x<0或1<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)=|xex|,又g(x)=[f(x)]2-tf(x)(t∈R),若方程g(x)=-2有4個(gè)不同的根,則t的取值范圍為( 。
A.$({-∞,-\frac{1}{e}-2e})$B.$({-∞,\frac{1}{e}-e})$C.$({\frac{1}{e}+2e,+∞})$D.$({\frac{1}{e}+e,+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a<b<0,則( 。
A.$\frac{1}{a}<\frac{1}$B.a2<abC.a2<b2D.$\frac{1}{a-b}<\frac{1}{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=xex
(Ⅰ)討論函數(shù)g(x)=af(x)+ex的單調(diào)性;
(Ⅱ)若直線y=x+2與曲線y=f(x)的交點(diǎn)的橫坐標(biāo)為t,且t∈[m,m+1],求整數(shù)m所有可能的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率e=$\sqrt{2}$,且它的一個(gè)頂點(diǎn)到較近焦點(diǎn)的距離為$\sqrt{2}$-1,則雙曲線C的方程為x2-y2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.執(zhí)行如圖所示的程序框圖,則輸出i的值為( 。
A.1006B.1007C.1008D.1009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某高中組織數(shù)學(xué)知識競賽,采取答題闖關(guān)的形式,分兩種題型,每種題型設(shè)兩關(guān).“數(shù)學(xué)文化”題答對一道得5分,“數(shù)學(xué)應(yīng)用”題答對一道得10分,答對一道題即可進(jìn)入下一關(guān),否則終止比賽.有甲、乙、丙三人前來參賽,設(shè)三人答對每道題的概率分別是$\frac{3}{4}$、$\frac{2}{3}$、$\frac{1}{2}$,三人答題互不影響.甲、乙選擇“數(shù)學(xué)文化”題,丙選擇“數(shù)學(xué)應(yīng)用”題.
(Ⅰ)求乙、丙兩人所得分?jǐn)?shù)相等的概率;
(Ⅱ)設(shè)甲、丙兩人所得分?jǐn)?shù)之和為隨機(jī)變量X,求X的分布列與期望.

查看答案和解析>>

同步練習(xí)冊答案