【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,﹣π<φ<0),其導(dǎo)函數(shù)f'(x)的部分圖象如圖所示,則函數(shù)f(x)的解析式為( 。

A. B.

C. D.

【答案】A

【解析】

導(dǎo)函數(shù)f'(x)=Aωcos(ωx+φ),由f′(x)的部分圖象知Aω=2,求得T=π,ω=2,A=1;由五點(diǎn)法畫圖知,x=時(shí)f(x)取得最大值,進(jìn)而求得角φ.

函數(shù)f(x)=Asin(ωx+φ),

則導(dǎo)函數(shù)f'(x)=Aωcos(ωx+φ),

f′(x)的部分圖象知Aω=2,

T=2×(+)=π,

∴ω==2,

∴A=1;

由五點(diǎn)法畫圖知,x=時(shí)f(x)取得最大值,

∴2×+φ=0,解得φ=﹣;

函數(shù)f(x)=sin(2x﹣).

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的三邊長分別為a,b,c,有以下四個(gè)命題:

①以,,為邊長的三角形一定存在;

②以,為邊長的三角形一定存在;

③以,為邊長的三角形一定存在;

④以,為邊長的三角形一定存在.

其中正確的命題為(

A.①③B.②③C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)當(dāng)時(shí),求證:

(2)求的單調(diào)區(qū)間;

(3)設(shè)數(shù)列的通項(xiàng),證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)袋子里裝有7個(gè)球,其中有紅球4個(gè).白球3個(gè).這些球除顏色外全相同.

1)若一次從袋中取出3個(gè)球,取出的球顏色不完全相同的概率;

2)若一次從袋中取出3個(gè)球.其中若取到紅球得0分,取到白球得1分,記隨機(jī)變量為取出的三個(gè)小球得分之和,求的分布列,并求其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某超市為顧客提供四種結(jié)賬方式:現(xiàn)金、支付寶、微信、銀聯(lián)卡.若顧客甲沒有銀聯(lián)卡,顧客乙只帶了現(xiàn)金,顧客丙、丁用哪種方式結(jié)賬都可以,這四名顧客購物后,恰好用了其中的三種結(jié)賬方式,那么他們結(jié)賬方式的可能情況有( )種

A. 19B. 7C. 26D. 12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b∈(0,1)∪(1,+∞),定義運(yùn)算:,則以下四個(gè)結(jié)論:①(2τ4)τ8=8τ(4τ2);②8τ(4τ2)>(8τ4)τ2>(2τ8)τ4;③(4τ2)=(2τ4)τ4<(2τ8)τ4;④.其中所有正確結(jié)論的序號為__

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象的一個(gè)對稱中心與它相鄰的一條對稱軸之間的距離為

(1)求函數(shù)f(x)的對稱軸方程及單調(diào)遞增區(qū)間;

(2)將函數(shù)y=f(x)的圖象向右平移個(gè)單位后,再將得到的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,當(dāng)x∈(,)時(shí),求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面為菱形,的中點(diǎn)為,且平面

(1)證明:

(2)若,,,試畫出二面角的平面角,并求它的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項(xiàng)均不相等的等差數(shù)列{an}的前四項(xiàng)和S4=14,且a1,a3,a7成等比數(shù)列.

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;

(Ⅱ)設(shè)Tn為數(shù)列{}的前n項(xiàng)和,若Tn≤λan+1n∈N*恒成立,求實(shí)數(shù)λ的最小值.

查看答案和解析>>

同步練習(xí)冊答案