【題目】(1)當(dāng)時(shí),求證:;
(2)求的單調(diào)區(qū)間;
(3)設(shè)數(shù)列的通項(xiàng),證明.
【答案】(1)見解析;(2)見解析;(3)見解析.
【解析】
(1)構(gòu)造函數(shù),對(duì)函數(shù)求導(dǎo)得到函數(shù)的單調(diào)性,進(jìn)而求得函數(shù)的最值,即可得證;(2)直接對(duì)函數(shù)求導(dǎo)得到,分,,,,幾種情況得到函數(shù)的單調(diào)性;(3)由題意知, 由(1)知當(dāng)時(shí), 當(dāng)時(shí)即,令則,同理:令則,同理:令則將式子累加得結(jié)果.
(1)的定義域?yàn)?/span>,恒成立;所以函數(shù)在上單調(diào)遞減,得時(shí)即:
(2)由題可得,且.
當(dāng)時(shí),當(dāng)有,所以單調(diào)遞減,
當(dāng)有,所以單調(diào)遞增,
當(dāng)時(shí),當(dāng)有,所以單調(diào)遞增,
當(dāng)有,所以單調(diào)遞減,
當(dāng)時(shí),當(dāng)有,所以單調(diào)遞增,
當(dāng)時(shí),當(dāng)有,所以單調(diào)遞增,
當(dāng)有,所以單調(diào)遞減,
當(dāng)時(shí),當(dāng)有,所以單調(diào)遞減,
當(dāng)有,所以單調(diào)遞增,
(3)由題意知.
由(1)知當(dāng)時(shí)
當(dāng)時(shí)即
令則,
同理:令則.
同理:令則
以上各式兩邊分別相加可得:
即
所以:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD的底面是直角梯形,,,,平面.
(Ⅰ)設(shè)為線段的中點(diǎn),求證://平面;
(Ⅱ)若,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究家用轎車在高速公路上的車速情況,交通部門對(duì)100名家用轎車駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時(shí)的平均車速情況為:在55名男性駕駛員中,平均車速超過(guò)的有40人,不超過(guò)的有15人;在45名女性駕駛員中,平均車速超過(guò)的有20人,不超過(guò)的有25人.
(1)完成下面的列聯(lián)表,并判斷是否有%的把握認(rèn)為平均車速超過(guò)的人與性別有關(guān).
平均車速超過(guò)人數(shù) | 平均車速不超過(guò)人數(shù) | 合計(jì) | |
男性駕駛員人數(shù) | |||
女性駕駛員人數(shù) | |||
合計(jì) |
(2)以上述數(shù)據(jù)樣本來(lái)估計(jì)總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機(jī)抽取3輛,記這3輛車中駕駛員為男性且車速超過(guò)的車輛數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列和數(shù)學(xué)期望.
參考公式與數(shù)據(jù):
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C經(jīng)過(guò)點(diǎn)和,且圓心C在直線上.
(1)求C圓的方程;
(2)直線l過(guò)圓C外一點(diǎn),且直線l與圓C只有一個(gè)公共點(diǎn),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長(zhǎng)為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求證:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)證明:在線段BC1存在點(diǎn)D,使得AD⊥A1B,并求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(, 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,若直線與曲線相切;
(1)求曲線的極坐標(biāo)方程;
(2)在曲線上取兩點(diǎn), 與原點(diǎn)構(gòu)成,且滿足,求面積的最大值.
【答案】(1);(2)
【解析】試題分析:(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式可得直線的直角坐標(biāo)方程為,
,消去參數(shù)可知曲線是圓心為,半徑為的圓,由直線與曲線相切,可得: ;則曲線C的方程為, 再次利用極坐標(biāo)與直角坐標(biāo)的互化公式可得
可得曲線C的極坐標(biāo)方程.
(2)由(1)不妨設(shè)M(),,(),
,
,
由此可求面積的最大值.
試題解析:(1)由題意可知直線的直角坐標(biāo)方程為,
曲線是圓心為,半徑為的圓,直線與曲線相切,可得: ;可知曲線C的方程為,
所以曲線C的極坐標(biāo)方程為,
即.
(2)由(1)不妨設(shè)M(),,(),
,
,
當(dāng) 時(shí), ,
所以△MON面積的最大值為.
【題型】解答題
【結(jié)束】
23
【題目】已知函數(shù)的定義域?yàn)?/span>;
(1)求實(shí)數(shù)的取值范圍;
(2)設(shè)實(shí)數(shù)為的最大值,若實(shí)數(shù), , 滿足,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面ABCD,,,,,E為PB的中點(diǎn).
(1)證明:平面平面PBC;
(2)求直線PD與平面AEC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,﹣π<φ<0),其導(dǎo)函數(shù)f'(x)的部分圖象如圖所示,則函數(shù)f(x)的解析式為( 。
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,底面是邊長(zhǎng)為3的正方形,平面,,,與平面所成的角為.
(1)求證:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com