方程
2
(x+1)2+(y+1)2
=|x+y-2|表示的曲線是( 。
A、橢圓B、雙曲線
C、拋物線D、不能確定
考點(diǎn):拋物線的定義
專(zhuān)題:圓錐曲線的定義、性質(zhì)與方程
分析:將已知的式子化為
(x+1)2+(y+1)2
=
|x+y-2|
2
,由兩點(diǎn)間的距離公式、點(diǎn)到直線的距離公式可得式子的幾何意義,根據(jù)拋物線的定義即可判斷出方程表示的曲線特征.
解答: 解:由
2
(x+1)2+(y+1)2
=|x+y-2|得,
(x+1)2+(y+1)2
=
|x+y-2|
2
①,
此式子的幾何意義是:點(diǎn)(x,y)到定點(diǎn)(-1,-1)的距離與到直線x+y-2=0的距離相等,
根據(jù)拋物線的定義知,點(diǎn)(x,y)的軌跡是以(-1,-1)為焦點(diǎn)、以直線x+y-2=0的拋物線,
所以方程表示的曲線是拋物線,
故選:C.
點(diǎn)評(píng):本題考查拋物線的定義,以及兩點(diǎn)間的距離公式、點(diǎn)到直線的距離公式,解題的關(guān)鍵是確定式子的幾何意義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x+1,x≥0
3x,x<0
,則f(f(log3
1
2
))的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,圓C過(guò)點(diǎn)(0,-1),(3+
2
,0),(3-
2
,0)
(Ⅰ)求圓C的方程;
(Ⅱ)是否存在實(shí)數(shù)a,使得圓C與直線x+y+a=0交于A,B兩點(diǎn),且OA⊥OB,若存在,求出a的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={正方體},B={長(zhǎng)方體},C={正四棱柱},D={直平行六面體},則( 。
A、A⊆B⊆C⊆D
B、C⊆A⊆B⊆D
C、A⊆C⊆B⊆D
D、它們之間不都存在包含關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓
x2
a2
+
y2
b2
=1(a>b>0)上任意一點(diǎn)p到兩焦點(diǎn)的距離之和為6,且橢圓的離心率為
1
3
,則橢圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

奇函數(shù)f(x)滿(mǎn)足f(x)=f(a-x)的周期為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“λ≤2”是“數(shù)列an=n2-λn+1(n∈N+)為遞增數(shù)列”的充要條件.
 
(判斷對(duì)錯(cuò))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,a=2,c=1,則∠C的取值范圍是( 。
A、(0,
π
6
]
B、[
π
6
π
3
]
C、[
π
3
,
π
2
D、(
π
2
,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=log
1
2
(3+2x-x2)的單調(diào)遞增區(qū)間是( 。
A、(1,3)
B、(3,+∞)
C、(-∞,-1)
D、(-1,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案