2.設(shè)等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足$\frac{_{1}}{{a}_{1}}$+$\frac{_{2}}{{a}_{2}}$+…+$\frac{_{n}}{{a}_{n}}$=1-$\frac{1}{{2}^{n}}$,n∈N*,求{bn}的前n項和Tn

分析 (1)設(shè)出等差數(shù)列的首項和公差,由已知列式求得首項和公差,則等差數(shù)列的通項公式可求;
(2)由$\frac{_{1}}{{a}_{1}}$+$\frac{_{2}}{{a}_{2}}$+…+$\frac{_{n}}{{a}_{n}}$=1-$\frac{1}{{2}^{n}}$,求得b1,進一步求得$\frac{bn}{an}$=$\frac{1}{{2}^{n}}$,得到{bn}的通項公式,再由錯位相減法求得數(shù)列{bn}的前n項和Tn

解答 解:(1)設(shè)等差數(shù)列{an}的首項為a1,公差為d.
由S4=4S2,a2n=2an+1,得
$\left\{\begin{array}{l}{4{a}_{1}+6d=8{a}_{1}+4d}\\{{a}_{1}+(2n-1)d=2{a}_{1}+2(n-1)d+1}\end{array}\right.$,
解得:a1=1,d=2.
因此an=2n-1;
(2)由已知$\frac{_{1}}{{a}_{1}}$+$\frac{_{2}}{{a}_{2}}$+…+$\frac{_{n}}{{a}_{n}}$=1-$\frac{1}{{2}^{n}}$,n∈N*,
當(dāng)n=1時,$\frac{_{1}}{{a}_{1}}=1-\frac{1}{2}=\frac{1}{2}$;
當(dāng)n≥2時,$\frac{_{1}}{{a}_{1}}$+$\frac{_{2}}{{a}_{2}}$+…+$\frac{_{n-1}}{{a}_{n-1}}=1-\frac{1}{{2}^{n-1}}$,
∴$\frac{_{n}}{{a}_{n}}$=1-$\frac{1}{{2}^{n}}$-(1-$\frac{1}{{2}^{n-1}}$)=$\frac{1}{{2}^{n}}$,
∴$\frac{bn}{an}$=$\frac{1}{{2}^{n}}$,n∈N*
由(1)知an=2n-1,n∈N*,
∴bn=$\frac{2n-1}{{2}^{n}}$,n∈N*
又Tn=$\frac{1}{2}$+$\frac{3}{{2}^{2}}$+$\frac{5}{{2}^{3}}$+…+$\frac{2n-1}{{2}^{n}}$,
∴$\frac{1}{2}$Tn=$\frac{1}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{2n-3}{{2}^{n}}$+$\frac{2n-1}{{2}^{n+1}}$,
兩式相減得$\frac{1}{2}$Tn=$\frac{1}{2}$+2($\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$)-$\frac{2n-1}{{2}^{n+1}}$
=$\frac{3}{2}$-$\frac{1}{{2}^{n-1}}$-$\frac{2n-1}{{2}^{n+1}}$,
∴Tn=3-$\frac{2n+3}{{2}^{n}}$.

點評 本題考查數(shù)列遞推式,考查了錯位相減法求數(shù)列的通項公式,訓(xùn)練了等比數(shù)列前n項和的求法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在四棱錐S-ABCD中,所有側(cè)棱長與底面邊長均相等,E為SC的中點.求證:
(Ⅰ) SA∥平面BDE;
(Ⅱ) SC⊥BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(2a-1)x+a(x<2)}\\{lo{g}_{a}(x-1)(x≥2)}\end{array}\right.$是R上的減函數(shù),則實數(shù)a的取值范圍是( 。
A.[$\frac{1}{3}$,$\frac{1}{2}$)B.[$\frac{2}{5}$,$\frac{1}{2}$)C.[$\frac{2}{5}$,1)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖所示的幾何體中,EA⊥平面ABC,BD⊥平面ABC,AC=BC=BD=2AE=$\frac{{\sqrt{2}}}{2}AB$,M是AB的中點.
(1)求證:CM⊥EM;
(2)求MC與平面EAC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知命題P:x2+x+4≥mx對一切的x<0恒成立,命題q:關(guān)于x的一元二次方程x2+(m-3)x+m+5=0的實數(shù)根均是正數(shù),若“p∨q”為真,“p∧q”為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若MA垂直菱形ABCD所在的平面,那么MC與BD的位置關(guān)系是( 。
A.異面B.平行C.垂直相交D.相交但不垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}和{bn}滿足:a1=2,$n{a_{n+1}}=(n+1){a_n}+n(n+1),n∈{N^*}$,且對一切n∈N*,均有${b_1}{b_2}…{b_n}={(\sqrt{2})^{a_n}}$.
(1)求證:數(shù)列$\{\frac{a_n}{n}\}$為等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Sn;
(3)設(shè)${c_n}=\frac{{{a_n}-{b_n}}}{{{a_n}{b_n}}}(n∈{N^*})$,記數(shù)列{cn}的前n項和為Tn,求正整數(shù)k,使得對任意n∈N*,均有Tk≥Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}、{bn}滿足:an+1=an+1,b${\;}_{n+1}=_{n}+\frac{1}{2}{a}_{n}$,cn=a${\;}_{n}^{2}-4_{n}$,n∈N+
(1)若a1=1,b1=0,求數(shù)列{an}、{bn}的通項公式;
(2)證明:數(shù)列{cn}是等差數(shù)列;
(3)定義fn(x)=x2+anx+bn,在(1)的條件下,是否存在n,使得fn(x)有兩個整數(shù)零點,如果有,求出n滿足的集合,如果沒有,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知數(shù)列{an}的前n項和Sn=(-1)n-1•n,若對任意的正整數(shù)n,有(an+1-p)(an-p)<0恒成立,則實數(shù)p的取值范圍是(-3,1).

查看答案和解析>>

同步練習(xí)冊答案