【題目】下列各組函數(shù)是同一函數(shù)的是

; ②

; ④

A. ②③ B. ①③ C. ③④ D. ①④

【答案】C

【解析】

定義域相同,但是對(duì)應(yīng)法則不同;fx)=xgx對(duì)應(yīng)法則不同,不是同一函數(shù);fx)=x0定義域相同,對(duì)應(yīng)法則相同,是同一函數(shù)fx)=x2x﹣1gt)=t2t﹣1.函數(shù)與用什么字母表示無關(guān),只與定義域和對(duì)應(yīng)法則有關(guān).

解:的定義域是{xx≤0};而x,對(duì)應(yīng)法則不相同,故這兩個(gè)函數(shù)不是同一函數(shù);

fx)=x的定義域都是R,|x|,這兩個(gè)函數(shù)的定義域相同,對(duì)應(yīng)法則不相同,故這兩個(gè)函數(shù)不是同一函數(shù);

fx)=x0=1的定義域是{xx≠0},而=1的定義域是{xx≠0},故這兩個(gè)函數(shù)是同一函數(shù);

fx)=x2x﹣1gt)=t2t﹣1,定義域與對(duì)應(yīng)法則相同,是同一函數(shù).

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的奇函數(shù),當(dāng)時(shí), ,則關(guān)于的函數(shù)的所有零點(diǎn)之和為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某機(jī)器人的運(yùn)動(dòng)軌道是邊長為1米的正三角形ABC,開機(jī)后它從A點(diǎn)出發(fā),沿軌道先逆時(shí)針運(yùn)動(dòng)再順時(shí)針運(yùn)動(dòng),每運(yùn)動(dòng)6米改變一次運(yùn)動(dòng)方向(假設(shè)按此方式無限運(yùn)動(dòng)下去),運(yùn)動(dòng)過程中隨時(shí)記錄逆時(shí)針運(yùn)動(dòng)的總路程s1和順時(shí)針運(yùn)動(dòng)的總路程s2,x為該機(jī)器人的運(yùn)動(dòng)狀態(tài)參數(shù),規(guī)定:逆時(shí)針運(yùn)動(dòng)時(shí)xs1,順時(shí)針運(yùn)動(dòng)時(shí)x-s2,機(jī)器人到A點(diǎn)的距離dx滿足函數(shù)關(guān)系dfx),現(xiàn)有如下結(jié)論:

fx)的值域?yàn)椋?/span>01];

fx)是以3為周期的函數(shù);

fx)是定義在R上的奇函數(shù);

fx)在區(qū)間[-3,-2]上單調(diào)遞增.

其中正確的有_________(寫出所有正確結(jié)論的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的n項(xiàng)和為Sn , 且a1=a2=1,{nSn+(n+2)an}為等差數(shù)列,則{an}的通項(xiàng)公式an=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示幾何體ABC﹣A1B1C1中,A1、B1、C1在面ABC上的射影分別是線段AB、BC、AC的中點(diǎn),面A1B1C1∥面ABC,△ABC是邊長為2的等邊三角形.

(1)求證:△A1B1C1是等邊三角形;
(2)若面ACB1A1⊥面BA1B1 , 求該幾何體ABC﹣A1B1C1的體積;
(3)在(2)的條件下,求面ABC與面A1B1B所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1=3an+1.
(1)證明{an+ }是等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)證明: + +…+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:的離心率為,點(diǎn)在橢圓C上.

1求橢圓C的方程;

2設(shè)動(dòng)直線與橢圓C有且僅有一個(gè)公共點(diǎn),判斷是否存在以原點(diǎn)O為圓心的圓,滿足此圓與相交兩點(diǎn)兩點(diǎn)均不在坐標(biāo)軸上,且使得直線 的斜率之積為定值?若存在,求此圓的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=aR).

(Ⅰ)若f(1)=2,求函數(shù)y=fx)-2x[,2]上的值域;

(Ⅱ)當(dāng)a∈(0,)時(shí),試判斷fx)在(0,1]上的單調(diào)性,并用定義證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的極值;

2)若對(duì)于任意的,若函數(shù)在區(qū)間上有最值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案