15.如圖所示的程序框圖,若輸出的S=63,則判斷框內(nèi)填入的條件是( 。
A.i>5?B.i>6?C.i≤5?D.i≤6?

分析 由已知中的程序語句可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量S的值,模擬程序的運(yùn)行過程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:當(dāng)S=1,i=1時,不滿足輸出條件,執(zhí)行循環(huán)體后,S=3,i=2;
當(dāng)S=3,i=2時,不滿足輸出條件,執(zhí)行循環(huán)體后,S=7,i=3;
當(dāng)S=7,i=3時,不滿足輸出條件,執(zhí)行循環(huán)體后,S=15,i=4;
當(dāng)S=15,i=4時,不滿足輸出條件,執(zhí)行循環(huán)體后,S=31,i=5;
當(dāng)S=31,i=5時,不滿足輸出條件,執(zhí)行循環(huán)體后,S=63,i=6;
當(dāng)S=63,i=6時,滿足輸出條件,
故條件應(yīng)為:i>5?,
故選:A

點評 題考查了程序框圖的應(yīng)用問題,解題時應(yīng)模擬程序框圖的運(yùn)行過程,以便得出正確的結(jié)論,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.一個三角形的外接圓半徑R=$\frac{a\sqrt{bc}}{b+c}$,則該三角形的最大內(nèi)角為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=x2ex對區(qū)間(a,a+1)內(nèi)存在極值點,則實數(shù)a的取值范圍是(  )
A.(-3,-1)∪(0,2)B.(-3,-2)∪(-1,0)C.(-2,-1)∪(0,3)D.(-3,-2)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù) f(x)=$\left\{{\begin{array}{l}{{x^2}-2x,x≤0}\\{sinx,x>0}\end{array}}$,若關(guān)于x的方程f(x)=kx-1沒有實根,則實數(shù)k的取值范圍是( 。
A.(-∞,-4)B.(-4,0)C.(-∞,-1)D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}中a1=2,a2=1,an+2=$\left\{\begin{array}{l}{\frac{2{a}_{n+1}}{{a}_{n}},{a}_{n+1}≥2}\\{\frac{4}{{a}_{n}},{a}_{n+1}<2}\end{array}\right.$(n∈N*),Sn是數(shù)列{an}的前n項和,則S2015=5239.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若變量x,y滿足x+5y+13=0(-3≤x≤2,且x≠1),則$\frac{y-1}{x-1}$的取值范圍是(  )
A.k≥$\frac{3}{4}$或k≤-4B.-4≤k≤$\frac{3}{4}$C.$\frac{3}{4}$≤k≤4D.-$\frac{3}{4}$≤k≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知△ABC的頂點坐標(biāo)分別是A(5,1),B(1,1),C(1,3),則△ABC的外接圓方程為(  )
A.(x+3)2+(y+2)2=5B.(x+3)2+(y+2)2=20C.(x-3)2+(y-2)2=20D.(x-3)2+(y-2)2=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,且b,ccosA,acosC成等差數(shù)列.
(1)求$\frac{{c}^{2}-{a}^{2}}{^{2}}$的值;
(2)若c=$\sqrt{5}$,tanA=$\frac{1}{2}$,求邊a的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)是定義在R上的偶函數(shù),已知x≥0時,f(x)=x2-2x
(1)求函數(shù)y=f(x)的解析式;
(2)畫出f(x)的圖象的草圖,并由圖象直接寫出函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)當(dāng)函數(shù)y=f(x)-K恰有4個零點時,直接寫出K的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案