直線-x+y+6=0的傾斜角是( 。
分析:由直線的方程求出斜率,再根據(jù)斜率求出直線的傾斜角.
解答:解:直線-x+y+6=0 即y=x-6,它的斜率為1,故此直線的傾斜角等于
π
4
,
故選B.
點評:本題主要考查直線的傾斜角和斜率,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•長春一模)橢圓
 x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,右焦點到直線x+y+
6
=0
的距離為2
3
,過M(0,-1)的直線l交橢圓于A,B兩點.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 若直線l交x軸于N,
NA
=-
7
5
NB
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=3,且對于任意大于1的正整數(shù)n,點(an,an-1)在直線x-y-6=0上,則a3-a5+a7的值( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
上有兩點P和Q.P、Q在X軸上射影分別是橢圓的左右焦點F1,F(xiàn)2且P、Q連線斜率為
2
2

(1)求橢圓的離心率;
(2)若以PQ為直徑的圓與直線x+y+6=0相切,求橢圓C方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•太原一模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>0b>0)
的離心率為
1
2
,點F1,F(xiàn)2分別是橢圓C的左,右焦點,以原點為圓心,橢圓C的短半軸為半徑的圓與直線 x-y+
6
=0相切.
(I)求橢圓C的方程;
(Ⅱ)若過點F2的直線l與橢圓C相交于點M,N兩點,求使△Fl MN面積最大時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P(x0,y0)是直線x+y-6=0上的動點,若圓D:(x-1)2+(y-1)2=4存在兩點B、C,使∠BPC=60°,則x0的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案