如圖,游客從某旅游景區(qū)的景點A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.

現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50m/min.在甲出發(fā)2min后,乙從A乘纜車到B,在B處停留1min后,再從B勻速步行到C.假設纜車勻速直線運動的速度為130m/min,山路AC長為1260m,經(jīng)測量,cosA,cosC.

(1)求索道AB的長;

(2)問乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?


 (1)在△ABC中,因為cosA,cosC

所以sinA,sinC.

從而sinB=sin[π-(AC)]

=sin(AC)

=sinAcosC+cosAsinC

××.

由正弦定理,得AB×sinC×=1040(m).

所以索道AB的長為1040m.

(2)假設乙出發(fā)tmin后,甲、乙兩游客距離為d,此時,甲行走了(100+50t)m,乙距離A處130tm,

所以由余弦定理得d2=(100+50t)2+(130t)2-2×130t×(100+50t=200(37t2-70t+50),

因0≤t,即0≤t≤8,故當t(min)時,甲、乙兩游客距離最短.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:


若sinα,α,則cos(α)=(  )

A.-                                                   B.-

C.                                                          D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


在△ABC中,若,則B的值為(  )

A.30°                                                          B.45°

C.60°                                                          D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


在△ABC中,角A,BC的對邊分別為a,b,c. 已知A,bsin(C)-csin(B)=a.

(1)求證:BC;

(2)若a,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


已知A船在燈塔C北偏東80°處,且AC距離為2km,B船在燈塔C北偏西40°,AB兩船距離為3km,則BC的距離為(  )

A.km                                                     B.(-1)km

C.(+1)km                                             D.km

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


某校運動會開幕式上舉行升旗儀式,旗桿正好處在坡度15°的看臺的某一列的正前方,從這一列的第一排和最后一排測得旗桿頂部的仰角分別為60°和30°,第一排和最后一排的距離為10m(如圖所示),旗桿底部與第一排在一個水平面上.若國歌長度約為50s,升旗手應以多少m/s的速度勻速升旗?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


設變量x,y滿足約束條件則目標函數(shù)z=3x-2y的最小值為(  )

A.-5                                      B.-4

C.-2                                                          D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


.把一段長16米的鐵絲截成兩段,分別圍成正方形,則兩個正方形面積之和的最小值為(  )

A.4                                                             B.8

C.16                                                           D.32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


a、b∈R,則“(aba2<0”是“a<b”的(  )

A.充分而不必要條件                                   B.必要而不充分條件

C.充要條件                                                 D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案