根據(jù)所給條件求直線的方程:
(1)直線過(guò)點(diǎn)(-4,0)且傾斜角為60°;
(2)直線過(guò)點(diǎn)(-3,4)且在兩坐標(biāo)軸上的截距相等.
考點(diǎn):直線的截距式方程,直線的一般式方程
專題:直線與圓
分析:(1)由直線的傾斜角為60°,可得斜率k=tan60°=
3
.利用點(diǎn)斜式即可得出;
(2)當(dāng)直線經(jīng)過(guò)原點(diǎn)時(shí),可得直線方程為y=-
4
3
x.當(dāng)直線不經(jīng)過(guò)原點(diǎn)時(shí),可設(shè)直線方程為x+y=a,把點(diǎn)(-3,4)代入即可得出.
解答: 解:(1)由直線的傾斜角為60°,可得斜率k=tan60°=
3
.可得點(diǎn)斜式為:y=
3
(x+4)

(2)當(dāng)直線經(jīng)過(guò)原點(diǎn)時(shí),可得直線方程為y=-
4
3
x.
當(dāng)直線不經(jīng)過(guò)原點(diǎn)時(shí),可設(shè)直線方程為x+y=a,把點(diǎn)(-3,4)代入可得-3+4=a,可得a=1.∴直線方程為x+y=1.
綜上可得直線方程為:y=-
4
3
x,或x+y=1.
點(diǎn)評(píng):本題考查了直線的點(diǎn)斜式與截距式、分類討論的思想方法,考查了計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為4,其長(zhǎng)軸長(zhǎng)和短軸長(zhǎng)之比為
3
:1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)F為橢圓C的右焦點(diǎn),T為直線x=t(t∈R,t≠2)上縱坐標(biāo)不為0的任意一點(diǎn),過(guò)F作TF的垂線交橢圓C于點(diǎn)P,Q.若OT平分線段PQ(其中O為坐標(biāo)原點(diǎn)),求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x)=2cos
x
2
,若△ABC滿足f(A)=1,BC=7,sinB=
5
3
14
,求AC及AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(
x
+1)=x2+2
x
,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+|x-a|+1,x∈R,a∈R.
(1)討論函數(shù)的奇偶性;
(2)若函數(shù)f(x)的最小時(shí)為g(a),令m=g(a),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式x2≤0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(x,y)在直線x-y-1=0上運(yùn)動(dòng),則(x-2)2+(y-2)2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A、B、C是△ABC的三個(gè)內(nèi)角,角C是銳角,若關(guān)于x的方程 x2-(2sinC)x+sinAsinB=0有兩個(gè)相等實(shí)根,且4sin2C+4cosC-5=0 求證:△ABC正三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=1,|
b
|=2,|3
a
+
b
|=4,則|
a
-2
b
|=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案