18.下列幾個(gè)命題:
①方程x2+(a-3)x+a=0有一個(gè)正實(shí)根,一個(gè)負(fù)實(shí)根,則a<0;
②函數(shù)y=$\sqrt{{x}^{2}-1}$+$\sqrt{1-{x}^{2}}$是偶函數(shù),但不是奇函數(shù);
③設(shè)函數(shù)y=f(x)定義域?yàn)镽,則函數(shù)y=f(1-x)與y=f(x-1)的圖象關(guān)于y軸對(duì)稱;
④一條曲線y=|3-x2|和直線y=a(a∈R)的公共點(diǎn)個(gè)數(shù)是m,則m的值不可能是1.
其中正確的是( 。
A.(1)(2)B.(1)(4)C.(3)(4)D.(2)(4)

分析 ①根據(jù)一元二次方程有異號(hào)根的判定方法可知①正確;②求出函數(shù)的定義域,根據(jù)定義域確定函數(shù)的解析式y(tǒng)=0,故②錯(cuò)誤;③舉例說(shuō)明知③錯(cuò)誤;④畫出函數(shù)的圖象,根據(jù)圖象可知④正確.

解答 解:①令f(x)=x2+(a-3)x+a,要使x2+(a-3)x+a=0有一個(gè)正實(shí)根,一個(gè)負(fù)實(shí)根,只需f(0)<0,即a<0即可,故①正確;
②函數(shù)的定義域?yàn)閧-1,1},∴y=0既是奇函數(shù)又是偶函數(shù),故②錯(cuò)誤;
③舉例:若y=x(x∈R),則f(x-1)=x-1與f(1-x)=1-x關(guān)于y軸不對(duì)稱,故③錯(cuò)誤;
④根據(jù)函數(shù)y=|3-x2|的圖象可知,故④正確.
∴正確的是:①④.
故選:B.

點(diǎn)評(píng) 本題考查了函數(shù)圖象的對(duì)稱變化和一元二次方程根的問(wèn)題,以及函數(shù)奇偶性的判定方法等基礎(chǔ)知識(shí),考查學(xué)生靈活應(yīng)用知識(shí)分析解決問(wèn)題的能力,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.分解因式:x2-xy+3y-3x=(x-y)(x-3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=ax2+2ax+1.
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)在區(qū)間[-3,2]上的單調(diào)遞減區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[-3,2]上的最大值為4,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)g(x)=f(x)+3x(x∈R)為奇函數(shù).
(Ⅰ)判斷函數(shù)f(x)的奇偶性;
(Ⅱ)若x>0時(shí),f(x)=log3x,求函數(shù)g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.證明函數(shù)f(x)=$\frac{2x+1}{x-1}$在(1,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)a>0,b>0.若$\sqrt{3}是{3^a}與{3^b}的等比中項(xiàng),則\frac{1}{a}+\frac{2}$的最小值為( 。
A.3B.$2\sqrt{2}$C.2+$3\sqrt{2}$D.3+$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知命題p:實(shí)數(shù)x滿足不等式組$\left\{\begin{array}{l}2<{2^x}<8\\{x^2}-6x+8<0\end{array}\right.$命題q:實(shí)數(shù)x滿足不等式(x-1)(x+a-12)≤0(其中a∈R).
(Ⅰ)解命題p中的不等式組;
(Ⅱ)若p是q的充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)集合A={x|ex$>\frac{1}{e}$},B={x|log2x<0},則A∩B等于(  )
A.{x|x<-1或x>1}B.{x|-1<x<1}C.{x|0<x<1}D.{x|x>1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.直線l過(guò)A(-a,8)、B(2,2a)兩點(diǎn),且kAB=12,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案