10.4sin80°-$\frac{cos10°}{sin10°}$等于( 。
A.$\sqrt{3}$B.-$\sqrt{3}$C.2D.2$\sqrt{2}$-3

分析 將所求的關(guān)系式通分后化弦,逆用兩角差的余弦與兩角差的正弦,即可求得答案.

解答 解:4sin80°-$\frac{cos10°}{sin10°}$
=$\frac{4cos10°sin10°-cos10°}{sin10°}$
=$\frac{2sin20°-cos10°}{sin10°}$
=$\frac{2sin20°-cos(30°-20°)}{sin10°}$
=$\frac{\frac{3}{2}sin20°-\frac{\sqrt{3}}{2}cos20°}{sin10°}$
=$\frac{\sqrt{3}sin(20°-30°)}{sin10°}$
=-$\sqrt{3}$,
故選:B.

點評 本題考查三角函數(shù)的化簡求值,考查兩角和與差的正弦與余弦,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖所示,莖葉圖記錄了甲、乙兩組各四名同學(xué)完成某道數(shù)學(xué)題的得分情況,該題滿分為12分.已知甲、乙兩組的平均成績相同,乙組某個數(shù)據(jù)的個位數(shù)模糊,記為x.
(Ⅰ)求x的值,并判斷哪組學(xué)生成績更穩(wěn)定;
(Ⅱ)在甲、乙兩組中各抽出一名同學(xué),求這兩名同學(xué)的得分之和低于20分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.平面內(nèi)滿足約束條件$\left\{\begin{array}{l}{y≥1}\\{y≤2x-1}\\{x+y≤8}\end{array}\right.$的點(x,y)形成的區(qū)域為M,區(qū)域M關(guān)于直線2x+y=0的對稱區(qū)域為M′,則區(qū)域M和區(qū)域M′內(nèi)最近的兩點的距離為(  )
A.$\frac{3\sqrt{3}}{5}$B.$\frac{4\sqrt{5}}{5}$C.$\frac{5\sqrt{5}}{5}$D.$\frac{6\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知A是常數(shù),如果函數(shù)f(x)滿足以下條件:①在定義域D內(nèi)是單凋函數(shù);②存在區(qū)間[m,n]⊆D,使得{y|y=f(x),m≤x≤n}=[An+3,Am+3],則稱f(x)為“反A倍增三函數(shù)”.若f(x)=$\sqrt{16-x}$-x是“反A倍增三函數(shù)”,那么A的取值范圍是{A|A≠-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={x|3x2-5x-2≥0},B={x|x≤$\frac{3}{2}$},則(∁RA)∩B=( 。
A.[-$\frac{1}{3}$,$\frac{3}{2}$]B.(-$\frac{1}{3}$,$\frac{3}{2}$]C.(-2,$\frac{3}{2}$]D.[$\frac{3}{2}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若復(fù)數(shù)z滿足z2+2|$\overline{z}$|=3,求z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知直線y=x+b與函數(shù)f(x)=lnx的圖象交于兩個不同的點A,B,其橫坐標分別為x1,x2,且x1<x2
(Ⅰ)求b的取值范圍;
(Ⅱ)當(dāng)x2≥2時,證明x1•x22<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某環(huán)保節(jié)能設(shè)備生產(chǎn)企業(yè)的產(chǎn)品供不應(yīng)求,已知某種設(shè)備的月產(chǎn)量x(套)與每套的售價y1(萬元)之間滿足關(guān)系式y(tǒng)1=150-$\frac{3}{2}$x,每套的售價不低于90萬元;月產(chǎn)量x(套)與生產(chǎn)總成本y2(萬元)之間滿足關(guān)系式y(tǒng)2=600+72x,則月生產(chǎn)多少套時,每套設(shè)備的平均利潤最大?最大平均利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.證明:若α∩β=l,a?α,b?β,α∩l=A,b∩l=B,A≠B,則a,b為異面直線.

查看答案和解析>>

同步練習(xí)冊答案