20.某網(wǎng)站體育版足球欄目發(fā)起了“射手的連續(xù)進(jìn)球與射手在場上的區(qū)域位置的關(guān)系”的調(diào)查活動(dòng),在所有參與調(diào)查的人中,持“有關(guān)系”“無關(guān)系”“不知道”態(tài)度的人數(shù)如表所示:
  有關(guān)系 無關(guān)系 不知道
 40歲以下 800 450 200
 40歲以上(含40歲) 100 150 300
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取n個(gè)人,已知從持“有關(guān)系”態(tài)度的人中抽取45人,求n的值;
(2)在持“不知道”態(tài)度的人中,用分層抽樣的方法抽取10人看作一個(gè)總體:
①從這10個(gè)人中選取3人,求至少一人在40歲以下的概率;
②從這10人中選取3人,若設(shè)40歲以下的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

分析 (1)根據(jù)分層抽樣的特點(diǎn)“等比例抽樣”求解即可.
(2)①利用古典概型概率公式以及對立事件概率公式求解;②利用超幾何分布的概率公式求概率,再求期望即可.

解答 解:(1)由題意,得$\frac{800+100}{45}$=$\frac{800+450+200+100+150+300}{n}$,
解得n=100.                                  
(2)設(shè)所選取的人中有m人在40歲以下
則$\frac{200}{200+300}=\frac{m}{10}$,解得m=4                          
①記“至少一人在40歲以下”為事件A
則P(A)=1-$\frac{{C}_{6}^{3}}{{C}_{10}^{3}}$=$\frac{5}{6}$.
②由題意得X的可能取值為0,1,2,3,
P(x=0)=$\frac{{C}_{6}^{3}}{{C}_{10}^{3}}$=$\frac{1}{6}$,P(x=1)=$\frac{{C}_{4}^{1}{C}_{6}^{2}}{{C}_{10}^{3}}$=$\frac{1}{2}$,
P(x=2)=$\frac{{C}_{4}^{2}{C}_{6}^{1}}{{C}_{10}^{3}}$=$\frac{3}{10}$,p(x=3)=$\frac{{C}_{4}^{3}}{{C}_{10}^{3}}$=$\frac{1}{30}$,
∴x的分布列為

X0123
P$\frac{1}{6}$$\frac{1}{2}$$\frac{3}{10}$$\frac{1}{30}$
E(x)=$0×\frac{1}{6}+1×\frac{1}{2}+2×\frac{3}{10}$+3×$\frac{1}{30}=\frac{6}{5}$.

點(diǎn)評 遇到“至少”、“至多”,且正面情況較多時(shí),可以考慮對立事件的概率;.利用概率或隨機(jī)變量的分布列以及期望、方差解決應(yīng)用題時(shí),要注意隨機(jī)變量的實(shí)際意義.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=x2+2x.
(1)寫出函數(shù)f(x)(x∈R)的解析式.
(2)若函數(shù)g(x)=f(x)-4x+2(x∈[1,2]),求函數(shù)g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,a,b,c分別是角A,B,C所對的邊,O為△ABC三邊中垂線的交點(diǎn).
(1)若b-c=$\frac{1}{4}$a,2sinB=3sinC,求cosA的值;
(2)若b2-2b+c2=0,求$\overrightarrow{BC}$•$\overrightarrow{AO}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x2-2ax+5(a>1),若f(x)在區(qū)間(-∞,2]上是減函數(shù),且對任意的x1,x2∈[1,a+1],總有|f(x1)-f(x2)|≤4,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知下列四組散點(diǎn)圖對應(yīng)的樣本統(tǒng)計(jì)數(shù)據(jù)的相關(guān)系數(shù)分別為r1,r2,r3,r4,則它們的大小關(guān)系為( 。
A.r1<r3<r4<r2B.r2<r4<r3<r1C.r4<r2<r1<r3D.r3<r1<r2<r4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.M科技公司從45名男員工、30名女員工中按照分層抽樣的方法組建了一個(gè)5人的科研小組.
(1)求某員工被抽到的概率及科研小組中男女員工的人數(shù);
(2)這個(gè)科研小組決定選出兩名員工做某項(xiàng)實(shí)驗(yàn),方法是先從小組中選出1名員工做實(shí)驗(yàn),該員工做完后,再從小組內(nèi)剩下的員工中選一名員工做實(shí)驗(yàn),求選出的兩名員工中恰有一名女員工的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知不等式(2x+y)($\frac{a}{x}+\frac{1}{y}$)≥25對任意正實(shí)數(shù)x、y恒成立,則正實(shí)數(shù)a的最小值為(  )
A.16B.12C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知圓C的圓心在直線3x+y-5=0上,并且經(jīng)過原點(diǎn)和點(diǎn)A(3,-1).
(Ⅰ)求圓C的方程.
(Ⅱ)若直線l過點(diǎn)P(1,1)且截圓C所得的弦長為$\frac{{2\sqrt{21}}}{3}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.列表,用五點(diǎn)法畫出下列函數(shù)在[0,2π]上的圖象
1、y=sinx+1
2、y=sin(-x)+1.

查看答案和解析>>

同步練習(xí)冊答案