8.已知R是實(shí)數(shù)集,集合P={m∈R|mx2+4mx-4<0對(duì)?x∈R都成立},Q={x|y=ln(x2+2x)},則(∁RP)∩(∁RQ)=( 。
A.{x|-2≤x≤-1}B.{x|-2≤x≤-1或x=0}C.{x|-2≤x<-1}D.{x|-2≤x<-1或x=0}

分析 求出結(jié)合的等價(jià)條件,利用集合的基本運(yùn)算進(jìn)行求解即可.

解答 解:mx2+4mx-4<0對(duì)?x∈R都成立,
則當(dāng)m=0時(shí),不等式等價(jià)為-4<0成立,滿(mǎn)足條件,
若m≠0,則不等式等價(jià)為$\left\{\begin{array}{l}{m<0}\\{△=16{m}^{2}+16m<0}\end{array}\right.$,
即$\left\{\begin{array}{l}{m<0}\\{-1<m<0}\end{array}\right.$,即-1<m<0,
綜上-1<m≤0,即P=(-1,0].
Q={x|y=ln(x2+2x)}={x|x2+2x>0}={x|x>0或x<-2},
則∁RP={x|x>0或x≤-1},∁RQ={x|-2≤x≤0},
則(∁RP)∩(∁RQ)={x|-2≤x≤-1},
故選:A.

點(diǎn)評(píng) 本題主要考查集合的基本運(yùn)算,求出集合的等價(jià)條件是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.直線(xiàn)l∥直線(xiàn)m,l與平面α相交,則m與平面α的位置關(guān)系是( 。
A.m與平面α相交B.m∥αC.m?αD.m在平面α外

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.圓的方程為x2+y2+2by-2b2=0,則圓的圓心和半徑分別為(  )
A.(0,b),$\sqrt{3}$bB.(0,b),$\sqrt{3}$|b|C.(0,-b),$\sqrt{3}$bD.(0,-b),$\sqrt{3}$|b|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)函數(shù)f(x)=$\frac{1}{2}$-$\frac{1}{{2}^{x}+1}$
(1)證明:函數(shù)f(x)是奇函數(shù);
(2)證明:函數(shù)f(x)在R上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知x,y滿(mǎn)足約束條件$\left\{{\begin{array}{l}{x-y≥0}\\{x+y≤2}\\{y≥0}\end{array}}\right.$,則z=2x+y的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列反映兩個(gè)變量的相關(guān)關(guān)系中,不同于其它三個(gè)的是( 。
A.名師出高徒B.水漲船高C.月明星稀D.登高望遠(yuǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知二次函數(shù)的頂點(diǎn)的縱坐標(biāo)為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間上[2a,a+1]上不單調(diào),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)有兩個(gè)命題,命題P:不等式x2-(a+1)x+1≤0的解集是∅;命題q:函數(shù)f(x)=(a+1)x在定義域中是增函數(shù),
(1)若p∧q為真命題時(shí),求a的取值范圍;
(2)若p∨q為真命題時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若實(shí)數(shù)x、y滿(mǎn)足x>0,y>0,且log2x+log2y=log2(x+2y),則2x+y的最小值為9.

查看答案和解析>>

同步練習(xí)冊(cè)答案