(本小題滿分12分)如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,,E,F(xiàn)分別是BC, PC的中點(diǎn).
(1)證明:AE⊥PD;
(2)若H為PD上的動(dòng)點(diǎn),EH與平面PAD所成最大角的正切值為,求二面角E—AF—C的余弦值.
(1)略
(2)
【解析】(Ⅰ)證明:由四邊形ABCD為菱形,∠ABC=60°,可得△ABC為正三角形.
因?yàn)?nbsp; E為BC的中點(diǎn),所以AE⊥BC.
又 BC∥AD,因此AE⊥AD.
因?yàn)镻A⊥平面ABCD,AE平面ABCD,所以PA⊥AE.
而 PA平面PAD,AD平面PAD 且PA∩AD=A,
所以 AE⊥平面PAD,又PD平面PAD.
所以 AE⊥PD………4分
(Ⅱ)解:設(shè)AB=2,H為PD上任意一點(diǎn),連接AH,EH.
由(Ⅰ)知 AE⊥平面PAD,
則∠EHA為EH與平面PAD所成的角.
在Rt△EAH中,AE=,
所以 當(dāng)AH最短時(shí),∠EHA最大,
即 當(dāng)AH⊥PD時(shí),∠EHA最大.
此時(shí) tan∠EHA=
因此 AH=.又AD=2,所以∠ADH=45°,
所以 PA=2………6分
解法一:因?yàn)?nbsp; PA⊥平面ABCD,PA平面PAC,
所以 平面PAC⊥平面ABCD.
過E作EO⊥AC于O,則EO⊥平面PAC,
過O作OS⊥AF于S,連接ES,則∠ESO為二面角E-AF-C的平面角,
在Rt△AOE中,EO=AE·sin30°=,AO=AE·cos30°=,
又F是PC的中點(diǎn),在Rt△ASO中,SO=AO·sin45°=,
又
在Rt△ESO中,cos∠ESO=
即所求二面角的余弦值為……12分
解法二:由(Ⅰ)知AE,AD,AP兩兩垂直,以A為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,又E、F分別為BC、PC的中點(diǎn),所以
E、F分別為BC、PC的中點(diǎn),所以
A(0,0,0),B(,-1,0),C(C,1,0),
D(0,2,0),P(0,0,2),E(,0,0),F(xiàn)(),
所以
設(shè)平面AEF的一法向量為
因此
因?yàn)?nbsp; BD⊥AC,BD⊥PA,PA∩AC=A,
所以 BD⊥平面AFC,
故 為平面AFC的一法向量.
又 =(),
因?yàn)?nbsp; 二面角E-AF-C為銳角,
所以所求二面角的余弦值為……12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分)
某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤(rùn)與投資單位是萬(wàn)元)
(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com