【題目】某校學(xué)生研究學(xué)習(xí)小組發(fā)現(xiàn),學(xué)生上課的注意力指標(biāo)隨著聽課時(shí)間的變化而變化,老師講課開始時(shí),學(xué)生的興趣激增;接下來(lái)學(xué)生的興趣將保持較理想的狀態(tài)一段時(shí)間,隨后學(xué)生的注意力開始分散.設(shè)表示學(xué)生注意力指標(biāo).
該小組發(fā)現(xiàn)隨時(shí)間(分鐘)的變化規(guī)律(越大,表明學(xué)生的注意力越集中)如下:(且).
若上課后第分鐘時(shí)的注意力指標(biāo)為,回答下列問(wèn)題:
()求的值.
()上課后第分鐘和下課前分鐘比較,哪個(gè)時(shí)間注意力更集中?并請(qǐng)說(shuō)明理由.
()在一節(jié)課中,學(xué)生的注意力指標(biāo)至少達(dá)到的時(shí)間能保持多長(zhǎng)?
【答案】(1) .
(2) 上課后第分鐘時(shí)比下課前分鐘時(shí)注意力更集中;理由見解析.
(3) 學(xué)生的注意力指標(biāo)至少達(dá)到的時(shí)間能保持分鐘.
【解析】分析:(1)由題意,,從而求出a的值;
(2)上課后第5分鐘末時(shí),,下課前5分鐘末,從而可得答案;
(3)分別討論三段函數(shù)上,從而求出的解,從而求在一節(jié)課中,學(xué)生的注意力指標(biāo)至少達(dá)到140的時(shí)間能保持的時(shí)間.
詳解:()由題意得,當(dāng)時(shí),,即,
解得.
()∵,,
∴,
故上課后第分鐘時(shí)比下課前分鐘時(shí)注意力更集中.
()①當(dāng)時(shí),由()知,,解得;
②當(dāng)時(shí),恒成立;
③當(dāng)時(shí),,解得.
綜上所述,.
故學(xué)生的注意力指標(biāo)至少達(dá)到的時(shí)間能保持分鐘.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知各項(xiàng)均不相等的等差數(shù)列{an}的前n項(xiàng)和為Sn,S10=45,且a3,a5,a9恰為等比數(shù)列{bn}的前三項(xiàng),記 .
(1)分別求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)若m=17,求cn取得最小值時(shí)n的值;
(3)當(dāng)c1為數(shù)列{cn}的最小項(xiàng)時(shí), 有相應(yīng)的可取值,我們把所有am的和記為A1;…;當(dāng)ci為數(shù)列的最小項(xiàng)時(shí),有相應(yīng)的可取值,我們把所有am的和記為Ai;…,令Tn= A1+ A2+…+An,求Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是公差不為零的等差數(shù)列, 是等比數(shù)列,且,,.
(1)求數(shù)列,的通項(xiàng)公式;
(2)記,求數(shù)列的前項(xiàng)和;
(3)若滿足不等式成立的恰有個(gè),求正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在上的奇函數(shù),且,若,時(shí),有.
(1)證明在上是增函數(shù);
(2)解不等式;
(3)若對(duì),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓經(jīng)過(guò)點(diǎn),離心率,直線的方程為.
求橢圓的方程;
是經(jīng)過(guò)右焦點(diǎn)的任一弦(不經(jīng)過(guò)點(diǎn)),設(shè)直線與直線相交于點(diǎn),記, , 的斜率為, , .問(wèn):是否存在常數(shù),使得?若存在,求的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|+|x+5﹣a|
(1)若不等式f(x)﹣|x﹣a|≤2的解集為[﹣5,﹣1],求實(shí)數(shù)a的值;
(2)若x0∈R,使得f(x0)<4m+m2 , 求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和是Sn,且Sn=1(n∈N),數(shù)列{bn}是公差d不等于0的等差數(shù)列,且滿足:b1=,而b2,b5,ba14成等比數(shù)列.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形的邊長(zhǎng)為,,,將菱形沿對(duì)角線折起,得到三棱錐,點(diǎn)是棱的中點(diǎn),.
()求證:平面.
()求證:平面平面.
()求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車是城市交通的一道亮麗的風(fēng)景,給人們短距離出行帶來(lái)了很大的方便.某!眴诬嚿鐖F(tuán)”對(duì)市年齡在歲騎過(guò)共享單車的人群隨機(jī)抽取人調(diào)查,騎行者的年齡情況如下圖顯示。
(1)已知年齡段的騎行人數(shù)是兩個(gè)年齡段的人數(shù)之和,請(qǐng)估計(jì)騎過(guò)共享單車人群的年齡的中位數(shù);
(2)從兩個(gè)年齡段騎過(guò)共享單車的人中按的比例用分層抽樣的方法抽取人,從中任選人,求兩人都在)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com