【題目】在平面直角坐標系中,點,直線,圓.

1)求的取值范圍,并求出圓心坐標;

2)有一動圓的半徑為,圓心在上,若動圓上存在點,使,求圓心的橫坐標的取值范圍.

【答案】1的取值范圍為,圓心坐標為;(2.

【解析】

1)根據(jù)圓的一般方程得出關于實數(shù)的不等式,即可求出實數(shù)的取值范圍,再利用圓心坐標公式可求出圓心坐標;

2)由題意可知點的坐標為,由可知線段的垂直平分線與圓有公共點,由此可得出關于實數(shù)的不等式,進而可求出實數(shù)的取值范圍.

1)由于方程表示的曲線為圓,則,

解得,所以,實數(shù)的取值范圍是,圓心的坐標為;

2)由于點在直線上,且該點的橫坐標為,則點的坐標為,

可知,點為線段的垂直平分線上一點,

且線段的垂直平分線方程為,所以,直線與圓有公共點,

由于圓的圓心坐標為,半徑為,則有,即,

解得,因此,實數(shù)的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】近年來,隨著網(wǎng)絡的普及,數(shù)碼產(chǎn)品早已走進千家萬戶的生活,為了節(jié)約資源,促進資源循環(huán)利用,折舊產(chǎn)品回收行業(yè)得到迅猛發(fā)展,電腦使用時間越長,回收價值越低,某二手電腦交易市場對2018年回收的折舊電腦交易前使用的時間進行了統(tǒng)計,得到如圖所示的頻率分布直方圖,在如圖對時間使用的分組中,將使用時間落入各組的頻率視為概率.

(1)若在該市場隨機選取1個2018年成交的二手電腦,求其使用時間在上的概率;

(2)根據(jù)電腦交易市場往年的數(shù)據(jù),得到如圖所示的散點圖及一些統(tǒng)計量的值,其中(單位:年)表示折舊電腦的使用時間,(單位:百元)表示相應的折舊電腦的平均交易價格.

由散點圖判斷,可采用作為該交易市場折舊電腦平均交易價格與使用年限的回歸方程,若,選用如下參考數(shù)據(jù),求關于的回歸方程,并預測在區(qū)間(用時間組的區(qū)間中點值代表該組的值)上折舊電腦的價格.

5.5

8.5

1.9

301.4

79.75

385

附:參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:,.參考數(shù)據(jù):,,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若曲線在點處的切線方程是,求函數(shù)上的值域;

(2)當時,記函數(shù),若函數(shù)有三個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校學生社團組織活動豐富,學生會為了解同學對社團活動的滿意程度,隨機選取了100位同學進行問卷調查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[40,50),[5060),[6070),,[90,100]分成6組,制成如圖所示頻率分布直方圖.

1)求圖中x的值;

2)求這組數(shù)據(jù)的中位數(shù);

3)現(xiàn)從被調查的問卷滿意度評分值在[60,80)的學生中按分層抽樣的方法抽取5人進行座談了解,再從這5人中隨機抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,直線E交于A、B兩點,且,其中O為原點.

1)求拋物線E的方程;

2)點C坐標為,記直線CA、CB的斜率分別為,證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為Sn,等比數(shù)列{bn}的前n項和為Tn,a1=﹣1,b1=1,a2+b2=2.

(1)若a3+b3=5,求{bn}的通項公式;

(2)若T3=21,求S3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為,射線交曲線于點,傾斜角為的直線過線段的中點且與曲線交于兩點.

(1)求曲線的直角坐標方程及直線的參數(shù)方程;

(2)當直線傾斜角為何值時,取最小值,并求出最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的一個焦點為,離心率為,為橢圓的左頂點,,為橢圓上異于的兩個動點,直線與直線分別交于,兩點.

1)求橢圓的方程;

2)若的面積之比為,求的坐標;

3)設直線與軸交于點,若,三點共線,判斷的大小關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中有相同的5個白球和4個黑球,從中任意摸出3個,求下列事件發(fā)生的概率.

1)摸出的全是白球或全是黑球、

2)摸出的白球個數(shù)多于黑球個數(shù).

查看答案和解析>>

同步練習冊答案