【題目】已知向量, ,設(shè)函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)在中,邊分別是角的對邊,角為銳角,若, , 的面積為,求邊的長.
【答案】(1);(2).
【解析】
利用二倍角公式和兩角和公式對函數(shù)解析式化簡整理,進(jìn)而根據(jù)正弦函數(shù)的性質(zhì)確
定函數(shù)的單調(diào)增區(qū)間.(2)根據(jù)(1)中函數(shù)的解析式,根據(jù)f(A)+sin(2A﹣)=1,求得A,根據(jù)三角形面積公式求得bc的值,利用余弦定理求得a.
(1)由題意得f(x)=sin2x﹣sinxcosx=﹣sin2x=﹣sin(2x+),
令2kπ+≤2x+≤2kπ+,k∈Z,
解得:kπ+≤x≤kπ+,k∈Z
所以函數(shù)f(x)的單調(diào)遞增區(qū)間為[kπ+,kπ+],k∈Z
(2)由f(A)+sin(2A﹣)=1得:﹣sin(2A+)+sin(2A﹣)=1,
化簡得:cos2A=﹣,
又因?yàn)?/span>0<A<,解得:A=,
由題意知:S△ABC=bcsinA=2,解得bc=8,
又b+c=7,所以a2=b2+c2﹣2bccosA=(b+c)2﹣2bc(1+cosA)=49﹣2×8×(1+)=25,
∴a=5
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,若是線段上的動點(diǎn),則下列結(jié)論不正確的是( )
A. 三棱錐的正視圖面積是定值
B. 異面直線,所成的角可為
C. 異面直線,所成的角為
D. 直線與平面所成的角可為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD=,PA⊥PD,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O為AD中點(diǎn).
(1)求B點(diǎn)到平面PCD的距離;
(2)線段PD上是否存在一點(diǎn)Q,使得二面角Q-AC-D的余弦值為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是菱形,,平面,,點(diǎn)分別為和中點(diǎn).
(1)求證:直線平面;
(2)求證:面;
(3)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足a1=2,an+1=3an+2,
(1)證明:是等比數(shù)列,并求的通項(xiàng)公式;
(2)證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且S3=9,a1 , a3 , a7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若an≠a1時,數(shù)列{bn}滿足bn=2 ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 ( t為參數(shù)).以原點(diǎn)為極點(diǎn),x軸正半軸為極軸 建立極坐標(biāo)系,圓C的方程為 ρ=2 sinθ.
(1)寫出直線l的普通方程和圓C的直角坐標(biāo)方程;
(2)若點(diǎn)P的直角坐標(biāo)為(1,0),圓C與直線l交于A,B兩點(diǎn),求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了讓學(xué)生更多的了解“數(shù)學(xué)史”知識,梁才學(xué)校高二年級舉辦了一次“追尋先哲的足跡,傾聽數(shù)學(xué)的聲音”的數(shù)學(xué)史知識競賽活動,共有800名學(xué)生參加了這次競賽.為了解本次競賽的成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果見下表.請你根據(jù)頻率分布表解答下列問題:
序號 | 分組 | 組中值 | 頻數(shù) | 頻率 |
(i) | (分?jǐn)?shù)) | (Gi) | (人數(shù)) | (Fi) |
1 | 65 | ① | 0.12 | |
2 | 75 | 20 | ② | |
3 | 85 | ③ | 0.24 | |
4 | 95 | ④ | ⑤ | |
合計(jì) | 50 | 1 |
(1)填充頻率分布表中的空格;
(2)為鼓勵更多的學(xué)生了解“數(shù)學(xué)史”知識,成績不低于85分的同學(xué)能獲獎,請估計(jì)在
參加的800名學(xué)生中大概有多少名學(xué)生獲獎?
(3)在上述統(tǒng)計(jì)數(shù)據(jù)的分析中有一項(xiàng)計(jì)算見算法流程圖,求輸出的S的值.查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ax,其中e為自然對數(shù)的底數(shù),a為常數(shù).
(1)若對函數(shù)f(x)存在極小值,且極小值為0,求a的值;
(2)若對任意x∈[0, ],不等式f(x)≥ex(1﹣sinx)恒成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com