某批產(chǎn)品成箱包裝,每箱5件.一用戶在購進(jìn)該批產(chǎn)品前先取出3箱,設(shè)取出的3箱中,第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.
(1)在取出的3箱中,若該用戶從第三箱中有放回的抽取3次(每次一件),求恰有兩次抽到二等品的概率;
(2)在取出的3箱中,若該用戶再從每箱中任意抽取2件產(chǎn)品進(jìn)行檢驗(yàn),用ξ表示抽檢的6件產(chǎn)品中二等品的件數(shù),求ξ的分布列及數(shù)學(xué)期望.
【答案】分析:(1)設(shè)隨機(jī)變量ξ表示“3次抽取抽到次品的件數(shù)”,則ξ~B,利用二項(xiàng)分布即可得出;
(2)利用超幾何分布即可得到概率.進(jìn)而得到分布列和數(shù)學(xué)期望.
解答:解:(1)設(shè)A表示事件“從第三箱中有放回地抽取3次(每次一件),恰有兩次取到二等品”,
依題意知,每次抽到二等品的概率為,

(2)ξ可能的取值為0,1,2,3.
P(ξ=0)=,P(ξ=1)==
P(ξ=2)=+=,P(ξ=3)==
ξ的分布列為
ξ123
P
數(shù)學(xué)期望為Eξ=1×+2×+3×=1.2.
點(diǎn)評:熟練掌握二項(xiàng)分布、超幾何分布及分布列和數(shù)學(xué)期望是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某批產(chǎn)品成箱包裝,每箱5件,一用戶在購進(jìn)該批產(chǎn)品前先取出3箱,再從每箱中任意出取2件產(chǎn)品進(jìn)行檢驗(yàn).設(shè)取出的第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.
(1)用ξ表示抽檢的6件產(chǎn)品中二等品的件數(shù),求ξ的分布列及ξ的數(shù)學(xué)期望;
(2)若抽檢的6件產(chǎn)品中有2件或2件以上二等品,用戶就拒絕購買這批產(chǎn)品,求這批產(chǎn)品被用戶拒絕的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某批產(chǎn)品成箱包裝,每箱5件.一用戶在購進(jìn)該批產(chǎn)品前先取出3箱,再從每箱中任意抽取2件產(chǎn)品進(jìn)行檢驗(yàn).設(shè)取出的第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.用ξ表示抽檢的6件產(chǎn)品中二等品的件數(shù).
(Ⅰ)求在抽檢的6件產(chǎn)品中恰有一件二等品的概率;
(Ⅱ)求ξ的分布列和數(shù)學(xué)期望值;
(Ⅲ)若抽檢的6件產(chǎn)品中有2件或2件以上二等品,用戶就拒絕購買這批產(chǎn)品,求這批產(chǎn)品被用戶拒絕的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某批產(chǎn)品成箱包裝,每箱5件,一用戶在購進(jìn)該批產(chǎn)品前先取出3箱,再從每箱中任意出取2件產(chǎn)品進(jìn)行檢驗(yàn).設(shè)取出的第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.
(I)求取6件產(chǎn)品中有1件產(chǎn)品是二等品的概率.
(II)若抽檢的6件產(chǎn)品中有2件或2件以上二等品,用戶就拒絕購買這批產(chǎn)品,求這批產(chǎn)品被用戶拒絕的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•瀘州模擬)某批產(chǎn)品成箱包裝,每箱5件,一用戶在購進(jìn)該批產(chǎn)品前先隨機(jī)取出3箱,再從每箱中任意抽取2件產(chǎn)品進(jìn)行檢驗(yàn).設(shè)取出的第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.
(1)若抽檢的6件產(chǎn)品中有2件或2件以上二等品,用戶就拒絕購買這批產(chǎn)品,求這批產(chǎn)品被用戶拒絕的概率;
(II)用ξ表示抽檢的6件產(chǎn)品中二等品的件數(shù),求ξ的分布列及ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•揭陽二模)某批產(chǎn)品成箱包裝,每箱5件.一用戶在購進(jìn)該批產(chǎn)品前先取出3箱,設(shè)取出的3箱中,第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.
(1)在取出的3箱中,若該用戶從第三箱中有放回的抽取3次(每次一件),求恰有兩次抽到二等品的概率;
(2)在取出的3箱中,若該用戶再從每箱中任意抽取2件產(chǎn)品進(jìn)行檢驗(yàn),用ξ表示抽檢的6件產(chǎn)品中二等品的件數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案