已知:集合A={x|1≤x≤3},B={x|x2-2mx-15m2≥0,m<0},若A∩B=∅,求實(shí)數(shù)m的取值范圍.
考點(diǎn):交集及其運(yùn)算
專(zhuān)題:集合
分析:解出集合B={x|x≤5m,或x≥-3m},因?yàn)锳∩B=∅,所以m滿(mǎn)足:
5m<1
-3m>3
,解這個(gè)不等式組即可求得m的取值范圍.
解答: 解:∵方程x2-2mx-15m2=(x-5m)(x+3m)=0的實(shí)數(shù)根為:x1=5m,x2=-3m,m<0,
∴x1<x2;
∴B={x|x≤5m,或x≥-3m};
∵A∩B=∅,∴
5m<1
-3m>3
,解得m<-1;
∴m的取值范圍是(-∞,-1).
點(diǎn)評(píng):考查一元二次不等式的解法,交集的定義,空集的概念,可借助數(shù)軸求解使求解更形象.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是定義在R上的偶函數(shù),當(dāng)x>0時(shí),f(x)=lnx,那么函數(shù)y=f(x)的零點(diǎn)個(gè)數(shù)為( 。
A、一定是2
B、一定是3
C、可能是2也可能是3
D、可能是0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正數(shù)x,y滿(mǎn)足
1
x
+
9
y
=1.
(1)求xy的最小值.
(2)求x+y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin(ωx+
π
6
),ω∈R,且ω≠0.
(Ⅰ)若f(x)的圖象經(jīng)過(guò)點(diǎn)(
π
6
,2),且0<ω<3,求ω的值;
(Ⅱ)在(Ⅰ)的條件下,若函數(shù)g(x)=mf(x)+n(m>0),當(dāng)x∈[0,
π
2
]時(shí),g(x)的值域?yàn)閇-5,1],求m,n的值;
(Ⅲ)若函數(shù)h(x)=f(x-
π
)在[-
π
3
,
π
3
]上是減函數(shù),求ω的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3+
1
2
x2-2x+
8
3
,求f(x)在區(qū)間[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|
1
x-3
<1},B={x|-x2+x-m+m2≥0},若滿(mǎn)足A∪B=A,求實(shí)數(shù)m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=4,DC=6,BC=2.
(1)若P是腰DC的中點(diǎn),求|
PA
+3
PB
|的值;
(2)在腰DC上是否存在點(diǎn)P,使∠APB=90°.若存在,求出點(diǎn)P的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(n)=1+
1
2
+
1
3
+…+
1
n
(n∈N),是否存在關(guān)于正整數(shù)的函數(shù)g(n),使等式f(1)+f(2)+…+f(n-1)=g(n)•[f(n)-1]對(duì)于n≥2的一切自然數(shù)都成立?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,三內(nèi)角A、B、C的對(duì)邊分別是a、b、c,其中c=10,
sin(A-B)
sin(A+B)
=
a2-b2
a2+b2
=-
7
25

(1)判斷△ABC的形狀;
(2)若△ABC外接圓為⊙O,點(diǎn)P位于劣弧
AC
上,∠APB=60°,求四邊形ABCP的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案