分析 (1)數(shù)列{an}的前n項(xiàng)和Sn=$\frac{3{n}^{2}-n}{2}$,n∈N*.利用a1=S1,當(dāng)n≥2時(shí),an=Sn-Sn-1,即可得出;
(2)bn=$\frac{1}{(3n-2)(3n+1)}$=$\frac{1}{3}(\frac{1}{3n-2}-\frac{1}{3n+1})$,利用“裂項(xiàng)求和”、“放縮法”即可得出.
解答 (1)解:∵數(shù)列{an}的前n項(xiàng)和Sn=$\frac{3{n}^{2}-n}{2}$,n∈N*.
∴a1=S1=$\frac{3-1}{2}$=1,當(dāng)n≥2時(shí),an=Sn-Sn-1=$\frac{3{n}^{2}-n}{2}$-$\frac{3(n-1)^{2}-(n-1)}{2}$=3n-2,
當(dāng)n=1時(shí)上式也成立,
∴an=3n-2.
(2)證明:bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(3n-2)(3n+1)}$=$\frac{1}{3}(\frac{1}{3n-2}-\frac{1}{3n+1})$,
∴設(shè)數(shù)列{bn}前n項(xiàng)和為Gn=$\frac{1}{3}[(1-\frac{1}{4})+(\frac{1}{4}-\frac{1}{7})$+…+$(\frac{1}{3n-2}-\frac{1}{3n+1})]$
=$\frac{1}{3}$$(1-\frac{1}{3n+1})$<$\frac{1}{3}$,
∴Gn$<\frac{1}{3}$.
點(diǎn)評(píng) 本題考查了數(shù)列遞推式的應(yīng)用、“裂項(xiàng)求和”、“放縮法”,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
年份 | 2006 | 2008 | 2010 | 2012 | 2014 |
年需求量(萬(wàn)噸) | 257 | 276 | 298 | 298 | 318 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 15 | B. | 106 | C. | 731 | D. | 21340 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 4.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (x-1)2+(y+1)2=26 | B. | (x+1)2+(y+3)2=26 | C. | (x+2)2+(y+4)2=26 | D. | (x-2)2+y2=26 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
計(jì)劃購(gòu)物情況 | 沒(méi)有計(jì)劃購(gòu)物 | 計(jì)劃購(gòu)物1000元以內(nèi)(不含1000元) | 計(jì)劃購(gòu)物1000元以上(含1000元) |
所占比例 | $\frac{1}{5}$ | $\frac{2}{3}$ | x |
A. | 100 | B. | 200 | C. | 300 | D. | 600 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com