已知⊙O和⊙O內(nèi)一點(diǎn)P,過P的直線交⊙O于A、B兩點(diǎn),若PA•PB=24,OP=5,則⊙O的半徑長(zhǎng)為
 
考點(diǎn):與圓有關(guān)的比例線段
專題:直線與圓
分析:設(shè)⊙O的半徑長(zhǎng)為r,由題設(shè)條件利用相交弦定理得到(r-5)•(r+5)=PA•PB=24,由此能求出結(jié)果.
解答: 解:設(shè)⊙O的半徑長(zhǎng)為r,
∵⊙O和⊙O內(nèi)一點(diǎn)P,過P的直線交⊙O于A、B兩點(diǎn),
PA•PB=24,OP=5,
∴(r-5)•(r+5)=PA•PB=24,
∴r2-25=24,即r2=49,
解得r=7.
故答案為:7.
點(diǎn)評(píng):本題考查圓的半徑的求法,是中檔題,解題時(shí)要注意相交弦定理的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C兩焦點(diǎn)坐標(biāo)分別為F1(-
3
,0)
F2(
3
,0)
,且經(jīng)過點(diǎn)P(
3
,
1
2
)

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn)A(0,-1),直線l與橢圓C交于兩點(diǎn)M,N.若△AMN是以A為直角頂點(diǎn)的等腰直角三角形,試求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD是邊長(zhǎng)為1百米的正方形區(qū)域,現(xiàn)規(guī)劃建造一塊景觀帶△ECF,其中動(dòng)點(diǎn)E、F分別在CD、BC上,且△ECF的周長(zhǎng)為常數(shù)a(單位:百米).
(1)求景觀帶面積的最大值;
(2)當(dāng)a=2時(shí),請(qǐng)計(jì)算出從A點(diǎn)欣賞此景觀帶的視角(即∠EAF).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2-(m+2)x+m+5在區(qū)間(2,4)內(nèi)有且只有一個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x、y滿足
y≤x
x+y≤2
y≥0
,那么z=x+3y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足約束條件
1≤x≤2
2x-1≤y≤2x
,則
y
x
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足約束條件
x2+y2≤4
x-y+2≥0
y≥0
,則目標(biāo)函數(shù)z=2x+y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的序號(hào)為
 

①函數(shù)y=ln(3-x)的定義域?yàn)椋?∞,3];
②定義在[a,b]上的偶函數(shù)f(x)=x2+(a+5)x+b最小值為5;
③若命題p:對(duì)?x∈R,都有x2-x+2≥0,則命題¬p:?x∈R,有x2-x+2<0;
④命題“函數(shù)f(x)在x=x0處有極值,則f′(x)=0”的逆命題是真命題.
⑤函數(shù)f(x)=lgx-
1
x
的零點(diǎn)所在的區(qū)間是(
1
10
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果一個(gè)空間幾何體的正視圖、側(cè)視圖、俯視圖都是半徑等于5的圓,那么這個(gè)空間幾何體的表面積等于( 。
A、100π
B、
100π
3
C、25π
D、
25π
3

查看答案和解析>>

同步練習(xí)冊(cè)答案