分析 (I)對(duì)任意n∈N*,有2Sn=2an2+an-1.令n=1,可得:$2{a}_{1}=2{a}_{1}^{2}+{a}_{1}$-1,a1>0,解得a1.n≥2時(shí),2an=2(Sn-Sn-1),化為(an+an-1)(an-an-1-$\frac{1}{2}$)=0.?dāng)?shù)列{an}的各項(xiàng)均為正數(shù),可得an-an-1=$\frac{1}{2}$.利用等差數(shù)列的通項(xiàng)公式即可得出.
(II)bn=2n•an=(n+1)•2n-1,再利用“錯(cuò)位相減法”、等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式即可得出.
解答 解:(I)對(duì)任意n∈N*,有2Sn=2an2+an-1.令n=1,可得:$2{a}_{1}=2{a}_{1}^{2}+{a}_{1}$-1,a1>0,解得a1=1.
n≥2時(shí),2an=2(Sn-Sn-1)=2an2+an-1-$(2{a}_{n-1}^{2}+{a}_{n-1}-1)$,化為:(an+an-1)(an-an-1-$\frac{1}{2}$)=0.
∵數(shù)列{an}的各項(xiàng)均為正數(shù),
∴an-an-1-$\frac{1}{2}$=0,即an-an-1=$\frac{1}{2}$.
∴數(shù)列{an}為等差數(shù)列,公差為$\frac{1}{2}$,首項(xiàng)為1.
∴an=1+$\frac{1}{2}$(n-1)=$\frac{n+1}{2}$.
(II)bn=2n•an=(n+1)•2n-1,
∴Tn=2×1+3×2+4×22+…+(n+1)×2n-1,
2Tn=2×2+3×22+…+n×2n-1+(n+1)×2n,
兩式相減可得:-Tn=2+2+22+…+2n-1-(n+1)×2n=1+$\frac{{2}^{n}-1}{2-1}$-(n+1)×2n=n×2n,
∴Tn=n×2n.
點(diǎn)評(píng) 本題考查了“錯(cuò)位相減法”、等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 14 | C. | 28 | D. | 56 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,+∞) | B. | [-2,2] | C. | (-2,2) | D. | (-∞,-2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com