分析 (1)由線面垂直的判定定理證明AC⊥面D1OD,即可證明D1O⊥AC;
(2)由DE⊥平面CD1O,可得DE⊥D1O,設(shè)D1D=2,則DO=$\sqrt{2}$,由此能求出$\frac{{{D_1}E}}{EO}=2$,由|D1E|=λ|EO|,得λ=2.利用等體積轉(zhuǎn)化,可求三棱錐C-DEO的體積.
解答 證明:(1)∵O是AC的中點,
∴AC⊥DO,
∵DD1⊥平面ABCD,AC?平面ABCD,
∴AC⊥DD1,
∵DO∩DD1=D,
∴AC⊥面D1OD.
∵D1O?面D1OD,∴AC⊥D1O.
解:(2)由D1D=2,則$DO=\sqrt{2}$,
∴在Rt△D1DO中,$O{D_1}=\sqrt{6}$,∴$DE=\frac{{2\sqrt{3}}}{3}$,∴${D_1}E=\frac{{2\sqrt{6}}}{3}$,
∴$EO=\frac{{\sqrt{6}}}{3}$,∴$\frac{{{D_1}E}}{EO}=2$,∴λ=2.
${V_{C-DEO}}={V_{E-DOC}}=\frac{1}{3}•{S_{△DOC}}•h$,易知${S_{△DOC}}=\frac{1}{4}{S_{ABCD}}=1$,$h=\frac{1}{3}D{D_1}=\frac{2}{3}$,
故${V_{C-DEO}}={V_{E-DOC}}=\frac{1}{3}•{S_{△DOC}}•h=\frac{2}{9}$.
點評 本題考查線面垂直的證明與性質(zhì)的運用,考查方程思想、等價轉(zhuǎn)化思想等數(shù)學(xué)思想方法和學(xué)生的空間想象能力、邏輯推理能力和運算求解能力,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}{a^3}$ | B. | $\frac{1}{3}{a^3}$ | C. | $\frac{1}{4}{a^3}$ | D. | $\frac{1}{6}{a^3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | $\frac{16}{3}$ | C. | $\frac{22}{3}$ | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=2x-3 | B. | y=-2x+5 | C. | y=-x+3 | D. | y=x-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com