【題目】設(shè)函數(shù),.
(1)當(dāng)時,函數(shù),在處的切線互相垂直,求的值;
(2)當(dāng)函數(shù)在定義域內(nèi)不單調(diào)時,求證:;
(3)是否存在實數(shù),使得對任意,都有函數(shù)的圖象在的圖象的下方?若存在,請求出最大整數(shù)的值;若不存在,請說理由.(參考數(shù)據(jù):,)
【答案】(1);(2)見解析;(3)1
【解析】分析:(1)求導(dǎo)得切線斜率為和,由垂直得斜率積為-1,從而得解;
(2),求導(dǎo)得,令,要使函數(shù)在定義域內(nèi)不單調(diào),只需要在有非重根,利用二次方程根的分別即可得解;
(3)對恒成立,令,,令,存在,使得,即,則,取到最小值, 所以,即在區(qū)間內(nèi)單調(diào)遞增,從而得解.
詳解:(1)當(dāng)時,,則在處的斜率為,
又在處的斜率為,則,解得 .
(2)函數(shù),
則 .
∵,∴,令,
要使函數(shù)在定義域內(nèi)不單調(diào),只需要在有非重根,
由于開口向上,且
只需要,得,
因為,所以,
故,當(dāng)且僅當(dāng)時取等號,命題得證 .
(3)假設(shè)存在實數(shù)滿足題意,則不等式對恒成立,
即對恒成立 .
令,則,
令,則,
因為在上單調(diào)遞增,,,且的圖象在上不間斷,
所以存在,使得,即,則,
所以當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.
則取到最小值,
所以,即在區(qū)間內(nèi)單調(diào)遞增,
所以,
所以存在實數(shù)滿足題意,且最大整數(shù)的值為1 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一盒中裝有9張各寫有一個數(shù)字的卡片,其中4張卡片上的數(shù)字是1,3張卡片上的數(shù)字是2,2張卡片上的數(shù)字是3,從盒中任取3張卡片.
(1)求所取3張卡片上的數(shù)字完全相同的概率;
(2)X表示所取3張卡片上的數(shù)字的中位數(shù),求X的分布列與數(shù)學(xué)期望.(注:若三個數(shù)字a,b,c滿足a≤b≤c,則稱b為這三個數(shù)的中位數(shù).)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】上饒某購物中心在開業(yè)之后,為了解消費(fèi)者購物金額的分布,在當(dāng)月的電腦消費(fèi)小票中隨機(jī)抽取張進(jìn)行統(tǒng)計,將結(jié)果分成5組,分別是,制成如圖所示的頻率分布直方圖(假設(shè)消費(fèi)金額均在元的區(qū)間內(nèi)).
(1)若在消費(fèi)金額為元區(qū)間內(nèi)按分層抽樣抽取6張電腦小票,再從中任選2張,求這2張小票均來自元區(qū)間的概率;
(2)為做好五一勞動節(jié)期間的商場促銷活動,策劃人員設(shè)計了兩種不同的促銷方案:
方案一:全場商品打8.5折;
方案二:全場購物滿200元減20元,滿400元減50元,滿600元減80元,滿800元減120元,以上減免只取最高優(yōu)惠,不重復(fù)減免.利用直方圖的信息分析哪種方案優(yōu)惠力度更大,并說明理由(直方圖中每個小組取中間值作為該組數(shù)據(jù)的替代值).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在D上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界已知函數(shù)
當(dāng),求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請說明理由;
若函數(shù)在上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).現(xiàn)有下列命題:
①f(﹣x)=﹣f(x);
②f( )=2f(x)
③|f(x)|≥2|x|
其中的所有正確命題的序號是( )
A.①②③
B.②③
C.①③
D.①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一種藥在病人血液中的含量不低于2克時,它才能起到有效治療的作用,已知每服用且克的藥劑,藥劑在血液中的含量克隨著時間小時變化的函數(shù)關(guān)系式近似為,其中.
若病人一次服用9克的藥劑,則有效治療時間可達(dá)多少小時?
若病人第一次服用6克的藥劑,6個小時后再服用3m克的藥劑,要使接下來的2小時中能夠持續(xù)有效治療,試求m的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點,直線,動直線垂直于點,線段的垂直平分線交于點,設(shè)點的軌跡為.
(Ⅰ)求曲線的方程;
(Ⅱ)以曲線上的點為切點做曲線的切線,設(shè)分別與、軸交于兩點,且恰與以定點為圓心的圓相切.當(dāng)圓的面積最小時,求與面積的比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩艘輪船都要在某個泊位?6小時,假定它們在一晝夜的時間段中隨機(jī)到達(dá),則這兩艘船中至少有一艘在?坎次粫r必須等待的概率是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com