過點P(0,3)作兩條相互垂直的直線分別交圓x2+y2=16于A、C和B、D兩點,則四邊形ABCD面積的最大值為
 
考點:直線與圓的位置關系
專題:直線與圓
分析:設圓心O到AC、BD的距離分別為d1、d2,由此表示出|AC|、|BD|,利用基本不等式求出四邊形ABCD面積的最大值.
解答: 解:∵圓O:x2+y2=16,
∴圓心O坐標(0,0),半徑r=4,
設圓心O到AC、BD的距離分別為d1、d2
∵P(0,3),
則d12+d22=OM2=02+32=9,
∴|AC|=2
r2-d12
=2
16-d12
,|BD|=2
r2-d22
=2
16-d22
,
∴四邊形ABCD的面積為
S=
1
2
|AC|•|BD|
=2
16-d12
16-d22
≤(16-d12)+(16-d22)=32-9=23,
當且僅當d12 =d22時取等號,
∴四邊形ABCD面積的最大值為23.
故答案為:23.
點評:本題考查了直線與圓的應用問題,也考查了對角線互相垂直的四邊形面積的求法以及基本不等式的應用問題,是中檔題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,一個倒立的圓錐,底面半徑為10cm,高為15cm,先將一定量的水注入其中,其形成的圓錐高為hcm,底面半徑為rcm
(1)求水的體積;
(2)若形成的圓錐的體積恰為原來圓錐體積的一半,求h的值(精確到0.01)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若存在不為零的常數(shù)T,使得函數(shù)y=f(x)對定義域內(nèi)的任意x均有f(x+T)=f(x),則稱函數(shù)y=f(x)為周期函數(shù),其中常數(shù)T就是函數(shù)的一個周期.
(1)證明:若存在不為零的常數(shù)a使得函數(shù)y=f(x)對定義域內(nèi)的任一x均有f(x+a)=-f(x),則此函數(shù)是周期函數(shù);
(2)若定義在R上的奇函數(shù)y=f(x)滿足f(x+1)=-f(x),試探究此函數(shù)在區(qū)間[-2008,2008]內(nèi)的零點的最少個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+2x+c(a、c∈N*)滿足:①f(1)=5;②6<f(2)<11.
(1)求a、c的值;
(2)設g(x)=f(x)-x2+m,若函數(shù)y=logmg(x)(m>0且m≠1)在區(qū)間[-2,4]上單調(diào)遞增,求實數(shù)m的取值范圍;
(3)設函數(shù)h(x)=log2[t-f(x)],討論此函數(shù)在定義域范圍內(nèi)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=10|x+1|-1的單調(diào)減區(qū)間為(  )
A、(-∞,-1)
B、(-∞,1)
C、(-1,+∞)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求sinx=
1
x
在區(qū)間[-π,π]內(nèi)解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an},是一個公差大于0的等差數(shù)列,且滿足a3a6=55,a2+a7=16
(1)求數(shù)列{an}的通項公式
(2)記Sn為數(shù)列{an}的前n項和,是否存在正整數(shù)n,使得Sn>30n+400?若存在,求n的最小值;若不存在,說明理由.
(3)若數(shù)列{an}和數(shù)列{bn}滿足等式an=
b1
2
+
b2
22
+
b3
23
+…+
bn
2n
(n為正整數(shù)),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:
1-2sin10°cos10°
cos350°-
1-cos2170°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

Rt△ABC中,AC=BC=
2
,CD⊥AB,沿CD將△ABC折成60°的二面角A-CD-B,則折疊后點A到平面BCD的距離是( 。
A、1
B、
1
2
C、
3
2
D、2

查看答案和解析>>

同步練習冊答案