若實(shí)數(shù)x,y滿足|x+1|+(y-1)2=0,則x+y=
 
考點(diǎn):曲線與方程
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用非負(fù)數(shù),求出x,y的值,即可求解x+y的值.
解答: 解:實(shí)數(shù)x,y滿足|x+1|+(y-1)2=0,
可得x+1=0.解得x=-1,y-1=0,解得y=1
所以x+y=-1+1=0.
故答案為:0.
點(diǎn)評(píng):本題考查函數(shù)與方程的應(yīng)用,函數(shù)的零點(diǎn),注意非負(fù)數(shù)的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖及部分度量值如圖所示,其中,正視圖與側(cè)視圖都是由一個(gè)正方形和一個(gè)等腰三角形組成,俯視圖是一個(gè)圓.
(1)判斷該幾何體的結(jié)構(gòu)特征,并求其表面積;
(2)如果正視圖中的點(diǎn)P是其所在線段的中點(diǎn),點(diǎn)Q是其所在正方形的頂點(diǎn),試求:在原幾何體的側(cè)面上,從P點(diǎn)到Q點(diǎn)的最短路徑的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=2x2+ax+b為偶函數(shù),g(x)=(
3
-1)x+m,h(x)=c(x+1)2(c≠2),關(guān)于x的方程f(x)=h(x)有且僅有一根
1
2

(Ⅰ)求a,b,c的值;
(Ⅱ)若對(duì)任意的x∈[-1,1],
f(x)
≤g(|x|)恒成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)令φ(x)=
f(x)
+
f(1-x)
,若存在x1,x2∈[0,1]使得|φ(x1)-φ(x2)|≥g(m),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:x2+2x-3>0;命題q:
3-x
<1,若“非q且p”為真,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-1-2lnx
(1)求曲線f(x)在點(diǎn)(1,f(x))處的切線方程;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的一元二次方程x2-5x+a2=0的一個(gè)根是0,則a的值是( 。
A、0B、1C、-1D、0,或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式組
x2-x-2>0
2x2+(5+2k)x+5k<0.

(1)當(dāng)k=0時(shí),求不等式組的解區(qū)間;
(2)若不等式組的整數(shù)解只有一個(gè)-2,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過(guò)點(diǎn)A(0,1)和B(-1,0),且b2-4a≤0.求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a、b為實(shí)數(shù),集合M={
b
a
,1},N={a,0},f:x→2x表示把集合M中的元素x,映射到集合N中為2x,則a+b等于(  )
A、-2B、0C、2D、±2

查看答案和解析>>

同步練習(xí)冊(cè)答案