設(shè)f(x)是定義在R上的可導(dǎo)函數(shù),且滿足f′(x)>f(x),對任意的正數(shù)a,下面不等式恒成立的是(  )
A.f(a)<eaf(0)B.f(a)>eaf(0)C.f(a)<
f(0)
ea
D.f(a)>
f(0)
ea
∵f(x)是定義在R上的可導(dǎo)函數(shù),
∴可以令f(x)=
f(x)
ex
,
∴f′(x)=
exf′(x)-f(x)ex
(ex)2
=
ex[f′(x)-f(x)]
(ex)2

∵f′(x)>f(x),ex>0,
∴f′(x)>0,
∴f(x)為增函數(shù),
∵正數(shù)a>0,
∴f(a)>f(0),
f(a)
ea
f(0)
e0
=f(0),
∴f(a)>eaf(0),
故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、設(shè)f(x)是定義在R上的奇函數(shù),且f(3)+f(-2)=2,則f(2)-f(3)=
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時,f(x)=2x+2x-1,則f(-1)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且f(1)=0,當(dāng)x>0時,有f(x)>xf′(x)恒成立,則不等式xf(x)>0的解集為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且y=f(x)滿足f(1-x)=f(x),且f( 
1
2
 )=2
,則f(1)+f(
3
2
)+f(2)+f(
5
2
)+f(3)+f(
7
2
)
=
-2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且對任意實數(shù)x,恒有f(x+2)=-f(x).當(dāng)x∈[0,2]時,f(x)=2x-x2+a(a是常數(shù)).則x∈[2,4]時的解析式為( 。
A、f(x)=-x2+6x-8B、f(x)=x2-10x+24C、f(x)=x2-6x+8D、f(x)=x2-6x+8+a

查看答案和解析>>

同步練習(xí)冊答案