18.心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取30名男生和20名女生,給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如表:(單位:人) 
幾何題代數(shù)題總計(jì)
男同學(xué)22830
女同學(xué)81220
總計(jì)302050
(1)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺和空間能力與性別有關(guān)?
(2)現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對(duì)她們的答題情況進(jìn)行全程研究,記甲、乙兩女生被抽到的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
附表及公式
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

分析 (1)計(jì)算K2,對(duì)照附表做結(jié)論;
(2)使用組合數(shù)公式和古典概型的概率計(jì)算公式分別計(jì)算X取不同值時(shí)的概率,得到X的分布列,求出數(shù)學(xué)期望.

解答 解:(1)k2=$\frac{50×(22×12-8×8)^{2}}{30×20×30×20}$≈5.556>5.024.
∴有97.5%的把握認(rèn)為視覺和空間能力與性別有關(guān).
(2)選擇做幾何題的8名女生中任意抽取兩人有C82=28種方法,其中甲、乙兩人都沒抽到有C62=15種方法,恰有一人被抽到有C21C61=12種方法,兩人都被抽到有C22=1種方法
X的可能取值為0,1,2.
P(X=0)=$\frac{15}{28}$,P(X=1)=$\frac{12}{28}$=$\frac{3}{7}$,P(X=2)=$\frac{1}{28}$.
X的分布列為:

X012
P$\frac{15}{28}$$\frac{3}{7}$$\frac{1}{28}$
∴E(X)=0×$\frac{15}{28}$+1×$\frac{3}{7}$+2×$\frac{1}{28}$=$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了獨(dú)立性檢驗(yàn)的統(tǒng)計(jì)思想,離散性隨機(jī)變量的分布列和數(shù)學(xué)期望,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若不等式x2+2ax+1≥0對(duì)于一切x∈(0,$\frac{1}{2}}$]成立,則a的最小值是-$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AB=2,BC=$\sqrt{2}$,CC1=1,M為線段AB的中點(diǎn).
(1)求異面直線DD1 與MC1所成的角;
(2)求直線MC1與平面BB1C1C所成的角;
(3)求三棱錐C-MC1D1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2sinωxcosωx-2$\sqrt{3}$cos2ωx+$\sqrt{3}$(ω>0),且y=f(x)的圖象的兩相鄰對(duì)稱軸間的距離為$\frac{π}{2}$.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,角C為銳角,且f(C)=$\sqrt{3}$,c=3$\sqrt{2}$,sinB=2sinA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)各項(xiàng)都是正數(shù)的等差數(shù)列{an}的公差為d,前n項(xiàng)和為Sn,若a2,S3,a2+S5成等比數(shù)列,則$\fracrevfywv{{a}_{1}}$=( 。
A.0B.$\frac{3}{2}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若a<b<0,則下列不等式一定成立的是(  )
A.a2c>b2c(c∈R)B.$\frac{a}$>1C.lg(b-a)>0D.($\frac{1}{2}$)a>($\frac{1}{2}$)b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.通過隨機(jī)詢問多名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),建立列聯(lián)表后,由K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$算得:K2=7.8,附表如下:
P(K2≥K)0.0500.0100.001
K3.8416.63510.828
參照附表:得到的正確結(jié)論是( 。
A.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
C.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在整數(shù)集中,不等式$\frac{2x+3}{2-x}$≥1的解集為{1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在ABC中,a=1,B=45°,S△ABC=2,則△ABC的外接圓的直徑是5$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案