A. | -$\frac{2}{3}$ | B. | -$\frac{3}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{2}{3}$ |
分析 根據(jù)函數(shù)f(x)在x=x0處導(dǎo)數(shù)的定義可推得:$\underset{lim}{h→0}$$\frac{f({x}_{0}-2h)-f({x}_{0}+h)}{6h}$=-$\frac{1}{2}$f'(x0).
解答 解:根據(jù)函數(shù)f(x)在x=x0處導(dǎo)數(shù)定義,
f'(x0)=$\underset{lim}{h→0}$$\frac{f({x}_{0}+h)-f({x}_{0}-2h)}{3h}$
=(-2)•$\underset{lim}{h→0}$$\frac{f({x}_{0}-2h)-f({x}_{0}+h)}{6h}$
所以,$\underset{lim}{h→0}$$\frac{f({x}_{0}-2h)-f({x}_{0}+h)}{6h}$=-$\frac{1}{2}$f'(x0)
而f'(x0)=3,所以,原式=-$\frac{3}{2}$,
故選:B.
點(diǎn)評(píng) 本題主要考查了函數(shù)在某一點(diǎn)處導(dǎo)數(shù)的定義,合理進(jìn)行恒等變形是解決本題的關(guān)鍵,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -8,48 | B. | 8,-36 | C. | -8,-48 | D. | 8,6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若|a|=|b|,則a=b | B. | 若|a|>|b|,則a>b | C. | 若a<b,則|a|>|b| | D. | 若|a|=|b|,則a=±b |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com