【題目】已知函數(shù),其中為實(shí)常數(shù).

1)若存在,使得在區(qū)間內(nèi)單調(diào)遞減,求的取值范圍;

2)當(dāng)時(shí),設(shè)直線與函數(shù)的圖象相交于不同的兩點(diǎn),證明:.

【答案】1;(2)見解析.

【解析】

1)將所求問題轉(zhuǎn)化為上有解,進(jìn)一步轉(zhuǎn)化為函數(shù)最值問題;

2)將所證不等式轉(zhuǎn)化為,進(jìn)一步轉(zhuǎn)化為,然后再通過構(gòu)造加以證明即可.

1,根據(jù)題意,內(nèi)存在單調(diào)減區(qū)間,

則不等式上有解,由,設(shè),

,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,

所以當(dāng)時(shí),,所以存在,使得成立,

所以的取值范圍為。

2)當(dāng)時(shí),,則,從而

所證不等式轉(zhuǎn)化為,不妨設(shè),則不等式轉(zhuǎn)化

,即,

,令,則不等式轉(zhuǎn)化為,因?yàn)?/span>

,則,從而不等式化為,設(shè),則

,所以上單調(diào)遞增,所以

即不等式成立,故原不等式成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某濕地公園內(nèi)有一條河,現(xiàn)打算建一座橋?qū)⒑觾砂兜穆愤B接起來,剖面設(shè)計(jì)圖紙如下:

其中,點(diǎn)軸上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),曲線段是橋的主體,為橋頂,且曲線段在圖紙上的圖形對(duì)應(yīng)函數(shù)的解析式為,曲線段均為開口向上的拋物線段,且分別為兩拋物線的頂點(diǎn),設(shè)計(jì)時(shí)要求:保持兩曲線在各銜接處()的切線的斜率相等.

(1)求曲線段在圖紙上對(duì)應(yīng)函數(shù)的解析式,并寫出定義域;

(2)車輛從經(jīng)爬坡,定義車輛上橋過程中某點(diǎn)所需要的爬坡能力為:(該點(diǎn)與橋頂間的水平距離)(設(shè)計(jì)圖紙上該點(diǎn)處的切線的斜率),其中的單位:米.若該景區(qū)可提供三種類型的觀光車:游客踏乘;蓄電池動(dòng)力;內(nèi)燃機(jī)動(dòng)力.它們的爬坡能力分別為米,米,米,又已知圖紙上一個(gè)單位長(zhǎng)度表示實(shí)際長(zhǎng)度米,試問三種類型的觀光車是否都可以順利過橋?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的的參數(shù)方程為(其中為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線經(jīng)過點(diǎn)曲線的極坐標(biāo)方程為.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)過點(diǎn)作直線的垂線交曲線兩點(diǎn)(軸上方),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若對(duì)任意,恒有,則實(shí)數(shù)的最小值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某搜索引擎廣告按照付費(fèi)價(jià)格對(duì)搜索結(jié)果進(jìn)行排名,點(diǎn)擊一次付費(fèi)價(jià)格排名越靠前,被點(diǎn)擊的次數(shù)也可能會(huì)提高,已知某關(guān)鍵詞被甲、乙等多個(gè)公司競(jìng)爭(zhēng),其中甲、乙付費(fèi)情況與每小時(shí)點(diǎn)擊量結(jié)果繪制成如下的折線圖.

1)若甲公司計(jì)劃從這10次競(jìng)價(jià)中隨機(jī)抽取3次競(jìng)價(jià)進(jìn)行調(diào)研,其中每小時(shí)點(diǎn)擊次數(shù)超過7次的競(jìng)價(jià)抽取次數(shù)記為,求的分布列與數(shù)學(xué)期望;

2)若把乙公司設(shè)置的每次點(diǎn)擊價(jià)格為x,每小時(shí)點(diǎn)擊次數(shù)為,則點(diǎn)近似在一條直線附近.試根據(jù)前5次價(jià)格與每小時(shí)點(diǎn)擊次數(shù)的關(guān)系,求y關(guān)于x的回歸直線.(附:回歸方程系數(shù)公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為研究學(xué)生語言學(xué)科的學(xué)習(xí)情況,現(xiàn)對(duì)高二200名學(xué)生英語和語文某次考試成績(jī)進(jìn)行抽樣分析. 將200名學(xué)生編號(hào)為001,002,…,200,采用系統(tǒng)抽樣的方法等距抽取10名學(xué)生,將10名學(xué)生的兩科成績(jī)(單位:分)繪成折線圖如下:

(Ⅰ)若第一段抽取的學(xué)生編號(hào)是006,寫出第五段抽取的學(xué)生編號(hào);

(Ⅱ)在這兩科成績(jī)差超過20分的學(xué)生中隨機(jī)抽取2人進(jìn)行訪談,求2人成績(jī)均是語文成績(jī)高于英語成績(jī)的概率;

(Ⅲ)根據(jù)折線圖,比較該校高二年級(jí)學(xué)生的語文和英語兩科成績(jī),寫出你的結(jié)論和理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E:,直線l不過原點(diǎn)O且不平行于坐標(biāo)軸,l與E有兩個(gè)交點(diǎn)A,B,線段AB的中點(diǎn)為M.

,點(diǎn)K在橢圓E上,、分別為橢圓的兩個(gè)焦點(diǎn),求的范圍;

證明:直線OM的斜率與l的斜率的乘積為定值;

若l過點(diǎn),射線OM與橢圓E交于點(diǎn)P,四邊形OAPB能否為平行四邊形?若能,求此時(shí)直線l斜率;若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)過橢圓的右焦點(diǎn)作互相垂直的兩條直線,其中直線交橢圓于兩點(diǎn),直線交直線點(diǎn),求證:直線平分線段.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線過點(diǎn),該拋物線的準(zhǔn)線與橢圓:相切,且橢圓的離心率為,點(diǎn)為橢圓的右焦點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過點(diǎn)的直線與橢圓交于兩點(diǎn),為平面上一定點(diǎn),且滿足,求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案