15.設(shè)集合M=[0,$\frac{1}{2}$),N=[$\frac{1}{2}$,1],函數(shù)f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2},x∈M}\\{2(1-x),x∈N}\end{array}\right.$.若x0∈M且f(f(x0))∈M,則x0的取值范圍為(  )
A.(0,$\frac{1}{4}$]B.[0,$\frac{3}{8}$]C.($\frac{1}{4}$,$\frac{1}{2}$]D.($\frac{1}{4}$,$\frac{1}{2}$)

分析 根據(jù)分段函數(shù)的解析即可求出x0的范圍.

解答 解:∵0≤x0<$\frac{1}{2}$,
∴f(x0))∈[$\frac{1}{2}$,1]⊆N,
∴f(f(x0))=2(1-f(x0))=2[1-(x0+$\frac{1}{2}$)]=2($\frac{1}{2}$-x0),
∵f(f(x0))∈M,
∴0≤2($\frac{1}{2}$-x0)<$\frac{1}{2}$,
∴$\frac{1}{4}$<x0≤$\frac{1}{2}$
∵0≤x0<$\frac{1}{2}$,
∴$\frac{1}{4}$<x0<$\frac{1}{2}$
故選:D

點(diǎn)評(píng) 本題考查 了集合的含義及表示、函數(shù)的單調(diào)性、最值、以及分段函數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在邊長(zhǎng)為2的正方形ABCD中,點(diǎn)E,F(xiàn)分別是AB,BC的中點(diǎn),將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于P.
(Ⅰ)求證:平面PBD⊥平面BFDE;
(Ⅱ)求四棱錐P-BFDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.直線(xiàn)$x+\sqrt{3}y-1=0$的傾斜角為( 。
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=3x+a的反函數(shù)y=f-1(x),若函數(shù)y=f-1(x)的圖象經(jīng)過(guò)(4,1),則實(shí)數(shù)a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=($\frac{1}{2}$)x的圖象與函數(shù)y=g(x)的圖象關(guān)于直線(xiàn)y=x對(duì)稱(chēng),令h(x)=g(1-x2),則關(guān)于函數(shù)y=h(x)的下列4個(gè)結(jié)論:
①函數(shù)y=h(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng);
②函數(shù)y=h(x)為偶函數(shù);
③函數(shù)y=h(x)的最小值為0;         
④函數(shù)y=h(x)在(0,1)上為增函數(shù)
其中,正確結(jié)論的序號(hào)為②③④.(將你認(rèn)為正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知f(x)=|x|(2-x)
(1)作出函數(shù)f(x)的大致圖象,并指出其單調(diào)區(qū)間;
(2)若函數(shù)f(x)=c恰有三個(gè)不同的解,試確定實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.從5名學(xué)生中任選3人分別擔(dān)任語(yǔ)文、數(shù)學(xué)、英語(yǔ)課代表,其中學(xué)生甲不能擔(dān)任數(shù)學(xué)課代表,共有48種不同的選法(結(jié)果用數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.如圖,已知正方形ABCD-A1B1C1D1,AA1=2,E為棱CC1的中點(diǎn),則三棱錐D1-ADE的體積為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.下列四個(gè)命題:
(1)函數(shù)f(x)在x>0時(shí)是增函數(shù),x<0也是增函數(shù),所以f(x)是增函數(shù);
(2)若函數(shù)f(x)=ax2+bx+2與x軸沒(méi)有交點(diǎn),則b2-8a<0且a>0;
(3)y=x2-2|x|-3的遞增區(qū)間為[1,+∞);
(4)y=1+x和y=$\sqrt{(1+x)^{2}}$表示相等函數(shù).
(5)若函數(shù)f(x-1)的定義域?yàn)閇1,2],則函數(shù)f(2x)的定義域?yàn)?[0,\frac{1}{2}]$.
其中正確的命題是(5)(寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案