12.若sinα=$\frac{5}{17}$,cosβ=-$\frac{5}{13}$,且α,β是同一象限的角,判斷角α+β是第幾象限的角.

分析 由題意可得α,β是第二象限的角,利用同角三角函數(shù)的基本關(guān)系求得cosα、sinβ的值,利用兩角和的余弦公式求得cos(α+β)的值,可得角α+β所在的象限.

解答 解:sinα=$\frac{5}{17}$,cosβ=-$\frac{5}{13}$,且α,β是同一象限的角,
∴α,β是第二象限的角,∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{2\sqrt{66}}{17}$,sinβ=$\sqrt{{1-cos}^{2}β}$=$\frac{12}{13}$.
∴2kπ+$\frac{π}{2}$<α<2kπ+π,β且 2kπ+$\frac{π}{2}$<β<2kπ+π,k∈Z.
∴2kπ+π<α+β<2kπ+2π,k∈Z,∴可以判斷角α+β是第三、第四象限的角.
∵cos(α+β)=cosαcosβ-sinαsinβ=-$\frac{2\sqrt{66}}{17}$•(-$\frac{5}{13}$)-$\frac{5}{17}•\frac{12}{13}$=$\frac{10\sqrt{66}-60}{221}$>0,
故α+β為第四象限角.

點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系,三角函數(shù)在各個(gè)象限中的符號,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x2-x|x-a|-ka(k為常數(shù)且k>0).
(Ⅰ)若a=1,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)恰有兩個(gè)不同的零點(diǎn)x1,x2,求|x1-x2|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在有限數(shù)列{an}中,Sn是{an}的前n項(xiàng)和,把$\frac{{{S_1}+{S_2}+{S_3}+…+{S_n}}}{n}$稱為數(shù)列{an}的“優(yōu)化和”,若數(shù)列a1,a2,a3,…,a2011的“優(yōu)化和”為2012,則數(shù)列1,a1,a2,a3,…,a2011的“優(yōu)化和”為2012.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.要從12個(gè)人中選出5個(gè)人,參加某項(xiàng)活動,若A,B,C三人不能入選,有多少種不同的選法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.寫出如圖陰影部分的角的集合為{α|-150°+k•360°≤α≤150°+k•360°,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)O,A,B,M為平面上四點(diǎn),$\overrightarrow{OM}$=$\frac{1}{3}$$\overrightarrow{OA}$$+\frac{2}{3}$$\overrightarrow{OB}$,則( 。
A.點(diǎn)B在線段AM上B.點(diǎn)M為線段BA的靠近B的三等分點(diǎn)
C.點(diǎn)M為線段BA的中點(diǎn)D.O,A,B,M四點(diǎn)共線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)△ABC的三內(nèi)角A,B,C所對的邊分別為a,b,c,已知(2b-c)cosA=acosC.
(1)求A;
(2)若a=1,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知lgcosx=-$\frac{1}{2}$,則cos2x=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△AOB中,$\overrightarrow{OA}=(2cosα,2sinα),\overrightarrow{OB}=(5sinβ,5cosβ),\overrightarrow{OA}•\overrightarrow{OB}=-5$,則△AOB的面積為(  )
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{5\sqrt{3}}}{2}$D.$5\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案