17.雙曲線$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}$=1的左焦點到右頂點的距離為(  )
A.1B.2C.4D.5

分析 求得雙曲線的a,b,由c=$\sqrt{{a}^{2}+^{2}}$,可得c,即可得到左焦點和右頂點,進而得到它們的距離.

解答 解:雙曲線$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}$=1的a=2,b=$\sqrt{5}$,
c=$\sqrt{4+5}$=3,
可得右頂點為(2,0),左焦點為(-3,0),
可得左焦點到右頂點的距離為5.
故選:D.

點評 本題考查雙曲線的左焦點和右頂點的距離,注意運用雙曲線方程求得基本量a,b,c,考查運算能力,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x-1,x<0}\\{-{e}^{x}-x,x≥0}\end{array}\right.$若關(guān)于x的方程f(x)+m=0有3個實數(shù)根,則實數(shù)m的取值范圍為( 。
A.(1,3)B.(-3,-1)C.(1,5)D.(-5,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在三角形ABC中,角A、B、C所對的邊分別為a、b、c,且a=2,∠C=$\frac{π}{4}$,cosB=$\frac{3}{5}$.
(1)求sinA的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若f(x)=x+$\frac{4}{x}$,則下列結(jié)論正確的是( 。
A.f(x)的最小值為4
B.f(x)在(0,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增
C.f(x)的最大值為4
D.f(x)在(0,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.如圖,已知F1、F2為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,點P在第一象限,且滿足($\overrightarrow{{F}_{1}P}$+$\overrightarrow{{F}_{1}{F}_{2}}$)•$\overrightarrow{{F}_{2}P}$=0,|$\overrightarrow{{F}_{2}P}$|=a,線段PF2與雙曲線C交于點Q,若$\overrightarrow{{F}_{2}P}$=5$\overrightarrow{{F}_{2}Q}$,則雙曲線C的漸近線方程為(  )
A.y=±$\frac{1}{2}$xB.y=±$\frac{\sqrt{5}}{5}$xC.y=±$\frac{2\sqrt{5}}{5}$xD.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在三棱錐A-BCD中,點A在BD上的射影為O,∠BAD=∠BCD=90°,AB=BC=2,AD=DC=2$\sqrt{3}$,AC=$\sqrt{6}$.
(Ⅰ)求證:AO⊥平面BCD;
(Ⅱ)若E是AC的中點,求直線BE和平面BCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,EF是圓O的直徑,AB∥EF,點M在EF上,AM、BM分別交圓O于點C、D.設圓O的半徑是r,OM=m.
(Ⅰ)證明:AM2+BM2=2(r2+m2);
(Ⅱ)若r=3m,求$\frac{AM}{CM}+\frac{BM}{DM}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知拋物線y2=4x的焦點到雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一條漸近線的距離為$\frac{1}{2}$,則該雙曲線的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{2}$C.$\frac{{2\sqrt{3}}}{3}$D.$\sqrt{5}+1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=2sin(x+$\frac{π}{6}$)cos(x-$\frac{π}{6}$),x∈R
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)設函數(shù)g(x)=f(x)+$\sqrt{3}$cos2x-$\frac{\sqrt{3}}{2}$,且g($\frac{α}{2}$)=$\frac{2}{3}$,0<α<π,求g($\frac{π}{4}$+$\frac{α}{2}$)的值.

查看答案和解析>>

同步練習冊答案